scholarly journals Soluble Extracts from Chia Seed (Salvia hispanica L.) Affect Brush Border Membrane Functionality, Morphology and Intestinal Bacterial Populations In Vivo (Gallus gallus)

Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2457 ◽  
Author(s):  
Pereira da Silva ◽  
Kolba ◽  
Stampini Duarte Martino ◽  
Hart ◽  
Tako

This study assessed and compared the effects of the intra-amniotic administration of various concentrations of soluble extracts from chia seed (Salvia hispanica L.) on the Fe and Zn status, brush border membrane functionality, intestinal morphology, and intestinal bacterial populations, in vivo. The hypothesis was that chia seed soluble extracts will affect the intestinal morphology, functionality and intestinal bacterial populations. By using the Gallus gallus model and the intra-amniotic administration approach, seven treatment groups (non-injected, 18 Ω H2O, 40 mg/mL inulin, non-injected, 5 mg/mL, 10 mg/mL, 25 mg/mL and 50 mg/mL of chia seed soluble extracts) were utilized. At hatch, the cecum, duodenum, liver, pectoral muscle and blood samples were collected for assessment of the relative abundance of the gut microflora, relative expression of Fe- and Zn-related genes and brush border membrane functionality and morphology, relative expression of lipids-related genes, glycogen, and hemoglobin levels, respectively. This study demonstrated that the intra-amniotic administration of chia seed soluble extracts increased (p < 0.05) the villus surface area, villus length, villus width and the number of goblet cells. Further, we observed an increase (p < 0.05) in zinc transporter 1 (ZnT1) and duodenal cytochrome b (Dcytb) proteins gene expression. Our results suggest that the dietary consumption of chia seeds may improve intestinal health and functionality and may indirectly improve iron and zinc intestinal absorption.

2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 292-292
Author(s):  
Nikita Agarwal ◽  
Noa Khen ◽  
Nikolai Kolba ◽  
Elad Tako

Abstract Objectives Assessment and comparison of the effects of various concentrations of soluble extracts of quinoa fiber (Chenopodium quinoa Willd.) and quercetin-3-glucoside on the zinc and iron status, brush border membrane (BBM) functionality, intestinal morphology, and cecal bacterial populations in-vivo (Gallus gallus). Methods The study utilized Gallus gallus intra-amniotic feeding, a clinically validated method to assess the effects of quinoa, quercetin, and control using seven groups (no injection, 18 Ω H2O, 5% inulin, 1% quercetin 3-glucoside, 2.5% quinoa fiber, 5% quinoa fiber, 1% quercetin 3-glucoside + 5% quinoa fiber). Upon hatch, the cecum, duodenum, pectoral muscle, liver, and blood samples were collected for the estimation of the relative abundance of the gut microbiome, mRNA gene expression Zn and Fe-related transporter proteins and brush border membrane functionality and morphology, glycogen, relative expression of lipid-related genes and hemoglobin levels, respectively. Results The results demonstrated an increase (P &lt; 0.05) in villi height, weight, and surface area in the groups administered with quercetin, and a dose-dependent increase was observed with quinoa soluble fiber treatment. Additionally, an increase in ferroportin and duodenal cytochrome B (DcytB) was observed in the group injected with both quinoa and quercetin. Similarly, zinc transporter 7 (ZnT7) and sucrose-isomaltase (SI) gene expression was upregulated in this group. Further, the administration of quinoa soluble fiber altered the composition and function of the cecal microbiome. Conclusions The evidence suggests that quinoa and quercetin have a synergistic effect, together they are found to improve BBM morphology and functionality, affect the intestinal microbiome, increase short-chain fatty acid production, and thereby improving mineral solubility. Quinoa fibers, a polyphenol-rich superfood, may help fight micronutrient deficiencies in target populations. Funding Sources N/A.


Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2563 ◽  
Author(s):  
Tom Warkentin ◽  
Nikolai Kolba ◽  
Elad Tako

The inclusion of pulses in traditional wheat-based food products is increasing as the food industry and consumers are recognizing the nutritional benefits due to the high protein, antioxidant activity, and good source of dietary fiber of pulses. Iron deficiency is a significant global health challenge, affecting approximately 30% of the world’s population. Dietary iron deficiency is the foremost cause of anemia, a condition that harms cognitive development and increases maternal and infant mortality. This study intended to demonstrate the potential efficacy of low-phytate biofortified pea varieties on dietary iron (Fe) bioavailability, as well as on intestinal microbiome, energetic status, and brush border membrane (BBM) functionality in vivo (Gallus gallus). We hypothesized that the low-phytate biofortified peas would significantly improve Fe bioavailability, BBM functionality, and the prevalence of beneficial bacterial populations. A six-week efficacy feeding (n = 12) was conducted to compare four low-phytate biofortified pea diets with control pea diet (CDC Bronco), as well as a no-pea diet. During the feeding trial, hemoglobin (Hb), body-Hb Fe, feed intake, and body weight were monitored. Upon the completion of the study, hepatic Fe and ferritin, pectoral glycogen, duodenal gene expression, and cecum bacterial population analyses were conducted. The results indicated that certain low-phytate pea varieties provided greater Fe bioavailability and moderately improved Fe status, while they also had significant effects on gut microbiota and duodenal brush border membrane functionality. Our findings provide further evidence that the low-phytate pea varieties appear to improve Fe physiological status and gut microbiota in vivo, and they highlight the likelihood that this strategy can further improve the efficacy and safety of the crop biofortification and mineral bioavailability approach.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2012
Author(s):  
Samantha Jo Grimes ◽  
Filippo Capezzone ◽  
Peteh Mehdi Nkebiwe ◽  
Simone Graeff-Hönninger

Rising consumer attraction towards superfoods and the steadily increasing demand for healthy, environmentally sustainable, and regionally produced food products has sharpened the demand for chia. Over the course of 4 years, two early flowering chia varieties belonging to Salvia hispanica L., and Salvia columbariae Benth. Species were identified to complete their phenological development and, therefore, able to reach maturity under a photoperiod >12 h, thus enabling the cultivation of chia in central Europe—more specifically, in southwestern Germany—consistently for the first time. Results obtained by the conducted field trial in 2018 showed that chia seed yields and thousand-seed mass ranged from 284.13 to 643.99 kg ha−1 and 0.92 to 1.36 g, respectively. Further, the statistical analyses showed that the protein content of the cultivated chia varieties ranged from 22.14 to 27.78%, the mucilage content varied from 10.35 to 20.66%, and the crude oil content amounted up to 28.00 and 31.73%. Fatty acid profiles were similar to previously reported data with α-Linolenic acid being the most prominent one, ranging from 60.40 to 65.87%, and we obtained ω6:ω3 ratios between 0.2 and 0.3. In conclusion, chia could represent a promising raw material from a nutritional point of view, while being able to diversify the local food basis of southwestern Germany.


1994 ◽  
Vol 189 (1) ◽  
pp. 55-67
Author(s):  
R Parthasarathy ◽  
W R Harvey

The time-dependent fluorescence intensity of an intravesicular potential-sensitive dye was used to probe the real-time kinetics of potential difference (PD)-dependent amino acid/Na+ symport at pH9 into brush-border membrane vesicles obtained from larval Manduca sexta midgut. Neutral amino acids (alanine, proline) are symported at higher rates as the vesicles are hyperpolarized. The symport rates of acidic (glutamate) and basic (arginine) amino acids are almost PD-independent. The half-saturation constant of alanine is PD-independent between -108 and -78 mV, although the maximal symport velocity increases by half as the voltage is increased. Amino acid throughput is evidently enhanced as the relatively high transmembrane PDs (&gt; 150 mV, lumen positive) measured in vivo are approached. The half-saturation concentrations of Na+ were in the range 15-40 mmol l-1 for most of the amino acids examined and increased with voltage for alanine. The Vmax observed as a function of cation or amino acid concentration increased as the vesicle was hyperpolarized in the case of leucine and alanine. The data support the hypothesis that carrier and substrates are at equilibrium inasmuch as substrate translocation seems to be the rate-determining step of symport.


2017 ◽  
Vol 55 (2) ◽  
pp. 457-466 ◽  
Author(s):  
Lucas Silveira Tavares ◽  
Luciana Affonso Junqueira ◽  
Ívina Catarina de Oliveira Guimarães ◽  
Jaime Vilela de Resende

2017 ◽  
Vol 100 (8) ◽  
pp. 6256-6265 ◽  
Author(s):  
B. Schettino ◽  
S. Vega ◽  
R. Gutiérrez ◽  
A. Escobar ◽  
J. Romero ◽  
...  

1976 ◽  
Vol 231 (4) ◽  
pp. 1024-1032 ◽  
Author(s):  
M Silverman ◽  
L Huang

The multiple indicator-dilution technique in vivo and isolated brush-border membranes in vitro have been used to explore the mechanism of maleic acid-induced glucosuria in dog kidney. The interaction of D-glucose with the antiluminal membrane from the peritubular fluid surface is unaltered. It is demonstrated that alpha-methyl-D-glucoside (alpha MG) enters and exits from the proximal tubular cell only across the brush-border membrane. Then using alphaMG as a reference indicator, it is shown that maleic acid does not cause complete inhibition of D-glucose interaction with the antiluminal membrane from the cytoplasmic surface. The binding of [3H]phlorizin both in vivo and in vitro is not affected by prior administration of maleic acid, indicating that D-glucose interaction with the outside surface of the brush border is also not affected by maleic acid. The data are therefore consistent with the concept that maleic acid-induced glucosuria is due either to i) partial inhibition of D-glucose movement from cytoplasm across the antiluminal membrane into the blood, ii) stimulated movement back across the brush-border membrane into urine, or iii) a combination of the two effects.


Sign in / Sign up

Export Citation Format

Share Document