scholarly journals A review of the differences between normal and osteoarthritis articular cartilage in human knee and ankle joints

The Foot ◽  
2009 ◽  
Vol 19 (3) ◽  
pp. 171-176 ◽  
Author(s):  
Linda Hendren ◽  
Paul Beeson
2018 ◽  
Author(s):  
Grischa Bratke ◽  
Steffen Willwacher ◽  
David Maintz ◽  
Gert-Peter Brüggemann

Cartilage ◽  
2020 ◽  
pp. 194760352097324
Author(s):  
Wassif Kabir ◽  
Claudia Di Bella ◽  
Peter F.M. Choong ◽  
Cathal D. O’Connell

Objectives Recapitulating the mechanical properties of articular cartilage (AC) is vital to facilitate the clinical translation of cartilage tissue engineering. Prior to evaluation of tissue-engineered constructs, it is fundamental to investigate the biomechanical properties of native AC under sudden, prolonged, and cyclic loads in a practical manner. However, previous studies have typically reported only the response of native AC to one or other of these loading regimes. We therefore developed a streamlined testing protocol to characterize the elastic and viscoelastic properties of human knee AC, generating values for several important parameters from the same sample. Design Human AC was harvested from macroscopically normal regions of distal femoral condyles of patients ( n = 3) undergoing total knee arthroplasty. Indentation and unconfined compression tests were conducted under physiological conditions (temperature 37 °C and pH 7.4) and testing parameters (strain rates and loading frequency) to assess elastic and viscoelastic parameters. Results The biomechanical properties obtained were as follows: Poisson ratio (0.4 ± 0.1), instantaneous modulus (52.14 ± 9.47 MPa) at a loading rate of 1 mm/s, Young’s modulus (1.03 ± 0.48 MPa), equilibrium modulus (7.48 ± 4.42 MPa), compressive modulus (10.60 ± 3.62 MPa), dynamic modulus (7.71 ± 4.62 MPa) at 1 Hz and loss factor (0.11 ± 0.02). Conclusions The measurements fell within the range of reported values for human knee AC biomechanics. To the authors’ knowledge this study is the first to report such a range of biomechanical properties for human distal femoral AC. This protocol may facilitate the assessment of tissue-engineered composites for their functionality and biomechanical similarity to native AC prior to clinical trials.


Author(s):  
Eleftherios A. Makris ◽  
Jerry Hu ◽  
Kyriacos A. Athanasiou

The poor ability of articular cartilage to repair following disease and injury makes the tissue a key target for reparative and regenerative medicine strategies. It has been shown that human knee joint resides under hypoxic conditions. Oxygen tension in healthy human synovium is between 7 and 11% and in articular cartilage may therefore be as low as 1–2.5% [1].


2017 ◽  
Vol 45 (10) ◽  
pp. 2422-2422
Author(s):  
Sotcheadt Sim ◽  
Insaf Hadjab ◽  
Martin Garon ◽  
Eric Quenneville ◽  
Patrick Lavigne ◽  
...  

2013 ◽  
Vol 46 (3) ◽  
pp. 541-547 ◽  
Author(s):  
Jeremy L. Coleman ◽  
Margaret R. Widmyer ◽  
Holly A. Leddy ◽  
Gangadhar M. Utturkar ◽  
Charles E. Spritzer ◽  
...  

2020 ◽  
pp. 1407-1418
Author(s):  
Enas Yahya Abdullah ◽  
Hala Khdhie

In this paper, the wear in layers of articular cartilage was calculated, parameters effective on elastic deformation were studied in normal and diseased knee joints,   and relations between elastic deformation and squeeze film characteristics under lubrication condition  were discussed with using a mathematical model. Conferring to the results obtained, elastic deformation effects on the performance of synovial human knee joint were analyzed from medical and dynamics perspectives. Relationships between elastic deformation and wear of layers were also discussed.


Biomechanics ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 225-238
Author(s):  
Hesam Khajehsaeid ◽  
Zanko Abdollahpour ◽  
Hedyeh Farahmandpour

Articular cartilage, as a hydrated soft tissue which covers diarthrodial joints, has a pivotal role in the musculoskeletal system. Osteoarthritis is the most common degenerative disease that affects most individuals over the age of 55. This disease affects the elasticity, lubrication mechanism, damping function, and energy absorption capability of articular cartilage. In order to investigate the effect of osteoarthritis on the performance of articular cartilage, the mechanical behavior of human knee articular cartilage was experimentally investigated. Progressive cyclic deformation was applied beyond the physiological range to facilitate degradation of the tissue. The relaxation response of the damaged tissue was modeled by means of a fractional-order nonlinear viscoelastic model in the framework of finite deformations. It is shown that the proposed fractional model well reproduces the tissue’s mechanical behavior using a low number of parameters. Alteration of the model parameters was also investigated throughout the progression of tissue damage. This helps predict the mechanical behavior of the osteoarthritic tissue based on the level of previous damage. It is concluded that, with progression of osteoarthritis, the articular cartilage loses its viscoelastic properties such as damping and energy absorption capacity. This is also accompanied by a loss of stiffness which deteriorates more rapidly than viscosity does throughout the evolution of tissue damage. These results are thought to be significant in better understanding the degradation of articular cartilage and the progression of OA, as well as in the design of artificial articular cartilages.


Sign in / Sign up

Export Citation Format

Share Document