Canopy temperature from an Unmanned Aerial Vehicle as an indicator of tree stress associated with red band needle blight severity

2019 ◽  
Vol 433 ◽  
pp. 699-708 ◽  
Author(s):  
Magdalena Smigaj ◽  
Rachel Gaulton ◽  
Juan C. Suárez ◽  
Stuart L. Barr
2020 ◽  
Vol 11 ◽  
Author(s):  
Gregor Perich ◽  
Andreas Hund ◽  
Jonas Anderegg ◽  
Lukas Roth ◽  
Martin P. Boer ◽  
...  

2019 ◽  
Vol 11 (3) ◽  
pp. 267 ◽  
Author(s):  
Jiang Bian ◽  
Zhitao Zhang ◽  
Junying Chen ◽  
Haiying Chen ◽  
Chenfeng Cui ◽  
...  

Irrigation water management and real-time monitoring of crop water stress status can enhance agricultural water use efficiency, crop yield, and crop quality. The aim of this study was to simplify the calculation of the crop water stress index (CWSI) and improve its diagnostic accuracy. Simplified CWSI (CWSIsi) was used to diagnose water stress for cotton that has received four different irrigation treatments (no stress, mild stress, moderate stress, and severe stress) at the flowering and boll stage. High resolution thermal infrared and multispectral images were taken using an Unmanned Aerial Vehicle remote sensing platform at midday (local time 13:00), and stomatal conductance (gs), transpiration rate (tr), and cotton root zone soil volumetric water content (θ) were concurrently measured. The soil background pixels of thermal images were eliminated using the Canny edge detection to obtain a unimodal histogram of pure canopy temperatures. Then the wet reference temperature (Twet), dry reference temperature (Tdry), and mean canopy temperature (Tl) were obtained from the canopy temperature histogram to calculate CWSIsi. The other two methods of CWSI evaluation were empirical CWSI (CWSIe), in which the temperature parameters were determined by measuring natural reference cotton leaves, and statistical CWSI (CWSIs), in which Twet was the mean of the lowest 5% of canopy temperatures and Tdry was the air temperature (Tair) + 5 °C. Compared with CWSIe, CWSIs and spectral indices (NDVI, TCARI, OSAVI, TCARI/OSAVI), CWSIsi has higher correlation with gs (R2 = 0.660) and tr (R2 = 0.592). The correlation coefficient (R) for θ (0–45 cm) and CWSIsi is also high (0.812). The plotted high-resolution map of CWSIsi shows the different distribution of cotton water stress in different irrigation treatments. These findings demonstrate that CWSIsi, which only requires parameters from a canopy temperature histogram, may potentially be applied to precision irrigation management.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Anjin Chang ◽  
Jinha Jung ◽  
Murilo M. Maeda ◽  
Juan A. Landivar ◽  
Henrique D. R. Carvalho ◽  
...  

Canopy temperature is an important variable directly linked to a plant’s water status. Recent advances in Unmanned Aerial Vehicle (UAV) and sensor technology provides a great opportunity to obtain high-quality imagery for crop monitoring and high-throughput phenotyping (HTP) applications. In this study, a UAV-based thermal system was developed to directly measure canopy temperature, skipping the traditional radiometric calibration process which is time-consuming and complicates data processing. Raw thermal imagery collected over a cotton field was converted to surface temperature using the Software Development Kit (SDK) provided by the sensor company. Canopy temperature map was generated using Structure from Motion (SfM), and Thermal Stress Index (TSI) was calculated for the test site. UAV temperature measurements were compared to ground measurements acquired by net radiometers and thermocouples. Temperature differences between UAV and ground measurements were less than 5%, and UAV measurements proved to be more stable. The proposed UAV system was successful in showing temperature differences between the cotton genotype. In conclusion, the system described in this study could possibly be used to monitor crop water status in a field setting, which should prove helpful for precision agriculture and crop research.


2020 ◽  
Vol 20 (4) ◽  
pp. 332-342
Author(s):  
Hyung Jun Park ◽  
Seong Hee Cho ◽  
Kyung-Hwan Jang ◽  
Jin-Woon Seol ◽  
Byung-Gi Kwon ◽  
...  

2018 ◽  
pp. 7-13
Author(s):  
Anton M. Mishchenko ◽  
Sergei S. Rachkovsky ◽  
Vladimir A. Smolin ◽  
Igor V . Yakimenko

Results of experimental studying radiation spatial structure of atmosphere background nonuniformities and of an unmanned aerial vehicle being the detection object are presented. The question on a possibility of its detection using optoelectronic systems against the background of a cloudy field in the near IR wavelength range is also considered.


Author(s):  
Amir Birjandi ◽  
◽  
Valentin Guerry ◽  
Eric Bibeau ◽  
Hamidreza Bolandhemmat ◽  
...  

2019 ◽  
Vol E102.B (10) ◽  
pp. 2014-2020
Author(s):  
Yancheng CHEN ◽  
Ning LI ◽  
Xijian ZHONG ◽  
Yan GUO

Sign in / Sign up

Export Citation Format

Share Document