Neighborhood competition mediates crown development of Picea sitchensis in Olympic rainforests: Implications for restoration management

2019 ◽  
Vol 441 ◽  
pp. 127-143 ◽  
Author(s):  
Russell D. Kramer ◽  
Stephen C. Sillett ◽  
Robert Van Pelt ◽  
Jerry F. Franklin
Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 129
Author(s):  
Tamalika Chakraborty ◽  
Albert Reif ◽  
Andreas Matzarakis ◽  
Somidh Saha

European beech (Fagus sylvatica L.) trees are becoming vulnerable to drought, with a warming climate. Existing studies disagree on how radial growth varies in European beech in response to droughts. We aimed to find the impact of multiple droughts on beech trees’ annual radial growth at their ecological drought limit created by soil water availability in the forest. Besides, we quantified the influence of competition and canopy openness on the mean basal area growth of beech trees. We carried out this study in five near-natural temperate forests in three localities of Germany and Switzerland. We quantified available soil water storage capacity (AWC) in plots laid in the transition zone from oak to beech dominated forests. The plots were classified as ‘dry’ (AWC < 60 mL) and ‘less-dry’ (AWC > 60 mL). We performed dendroecological analyses starting from 1951 in continuous and discontinuous series to study the influence of climatic drought (i.e., precipitation-potential evapotranspiration) on the radial growth of beech trees in dry and less-dry plots. We used observed values for this analysis and did not use interpolated values from interpolated historical records in this study. We selected six drought events to study the resistance, recovery, and resilience of beech trees to drought at a discontinuous level. The radial growth was significantly higher in less-dry plots than dry plots. The increase in drought had reduced tree growth. Frequent climatic drought events resulted in more significant correlations, hence, increased the dependency of tree growth on AWC. We showed that the recovery and resilience to climatic drought were higher in trees in less-dry plots than dry plots, but it was the opposite for resistance. The resistance, recovery, and resilience of the trees were heterogeneous between the events of drought. Mean growth of beech trees (basal area increment) were negatively impacted by neighborhood competition and positively influenced by canopy openness. We emphasized that beech trees growing on soil with low AWC are at higher risk of growth decline. We concluded that changes in soil water conditions even at the microsite level could influence beech trees’ growth in their drought limit under the changing climate. Along with drought, neighborhood competition and lack of light can also reduce beech trees’ growth. This study will enrich the state of knowledge about the ongoing debate on the vulnerability of beech trees to drought in Europe.


1993 ◽  
Vol 8 (1-4) ◽  
pp. 156-162 ◽  
Author(s):  
Jens I. Find ◽  
Franz Floto ◽  
Peter Krogstrup ◽  
Jette Dahl M⊘ller ◽  
Jens V. N⊘rgaard ◽  
...  

Fire Ecology ◽  
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
David G. Ray ◽  
Gabriel D. Cahalan ◽  
James C. Lendemer

Abstract Background Prescribed fire is increasingly used to accomplish management goals in fire-adapted systems, yet our understanding of effects on non-target organisms remains underdeveloped. Terricolous lichens in the genus Cladonia P. Browne, particularly cushion-forming reindeer lichens belonging to Cladonia subgenus Cladina Nyl., fit into this category, being characteristic of fire-adapted ecosystems, yet highly vulnerable to damage or consumption during burns. Moreover, inherently slow dispersal and growth rates raise questions about how to conserve these taxa in the context of fire-mediated restoration management. This research was undertaken to identify factors that contribute to Cladonia persistence within areas subject to repeated burning and involved tracking the fate of 228 spatially isolated individuals distributed across seven sites previously burned zero to two times. Site selection was determined by edaphic factors associated with a rare inland dune woodland community type known to support relatively high densities of Cladonia. Results Evaluated across all sites, the post-burn condition of Cladonia subtenuis (Abbayes) Mattick samples, categorized as intact (32%), fragmented (33%), or consumed (36%) individuals, approximated a uniform distribution. However, their status was highly variable at the different sites, where from 0 to 70% were assessed as intact and 11 to 60% consumed. Machine-learning statistical techniques were used to identify the factors most strongly associated with fire damage, drawing from variables describing the proximate fuel bed, growth substrate, and fire weather. The final descriptive model was dominated by variables characterizing the understory fuel matrix. Conclusions Areas with highly contiguous fuels dominated by pyrogenic pine needles were most likely to result in consumption of individual Cladonia, whereas those growing in areas with low fuel continuity or in areas dominated by hardwood litter were more likely to persist (intact or as fragments). Further, substrates including bare soil and moss mats afforded more protection than coarse woody debris or leaf litter in settings where fuels were both contiguous and highly flammable. Our findings describe the characteristics of within-site fire refugia, the abundance of which may be enhanced over time through restoration and maintenance treatments including thinning, promotion of mixed-species overstory composition, and periodic burning. Because lichens contribute to, and are considered reliable indicators of forest health, fire-based restoration management efforts will benefit from improved understanding of how these vulnerable organisms are able to persist.


1985 ◽  
Vol 63 (2) ◽  
pp. 232-241 ◽  
Author(s):  
Rob Scagel ◽  
Y. A. El-Kassaby ◽  
J. Emanuel

A multivariate extension of univariate sample size estimation is outlined that enables one to determine sample size for a multivariate study. The procedure is presented and illustrated by application to intraindividual and interindividual variation of cone morphology in a population of Picea sitchensis (Bong.) Carr. The method involves the stabilization of a scalar estimate of the structure of the correlation matrix (the determinant) among variables for a given sample size. The sample-specific dependency of previously described methods is avoided by random selection of several replicates in nonstructured and structured (nested) models. The procedure is best applied in pilot studies where it can aid in the characterization of multivariate data prior to analysis. Additionally, repeatability estimates for cone scale morphology are presented.


2012 ◽  
Vol 22 (3) ◽  
pp. 827-841 ◽  
Author(s):  
Jill A. Hamilton ◽  
Christian Lexer ◽  
Sally N. Aitken
Keyword(s):  

2001 ◽  
Vol 79 (4) ◽  
pp. 389-397 ◽  
Author(s):  
Hugh J Barclay

Leaf angle distributions are important in assessing both the flexibility of a plant's response to differing daily and seasonal sun angles and also the variability in the proportion of total leaf area visible in remotely sensed images. Leaf angle distributions are presented for six conifer species, Abies grandis (Dougl. ex D. Don) Lindl., Thuja plicata Donn. ex D. Don, Tsuga heterophylla (Raf.) Sarg., Pseudotsuga menziesii (Mirb.) Franco, Picea sitchensis (Bong.) Carr. and Pinus contorta Dougl. ex Loud. var. latifolia. The leaf angles were calculated by measuring four foliar quantities, and then the distributions of leaf angles are cast in three forms: distributions of (i) the angle of the long axis of the leaf from the vertical for the range 0–180°; (ii) the angle of the long axis of the leaf for the range 0–90°; and (iii) the angle of the plane of the leaf for the range 0–90°. Each of these are fit to the ellipsoidal distribution to test the hypothesis that leaf angles in conifers are sufficiently random to fit the ellipsoidal distribution. The fit was generally better for planar angles and for longitudinal angles between 0° and 90° than for longitudinal angles between 0° and 180°. The fit was also better for Tsuga heterophylla, Pseudotsuga menziesii, Picea sitchensis, and Pinus contorta than for Abies grandis and Thuja plicata. This is probably because Abies and Thuja are more shade tolerant than the other species, and so the leaves in Abies and Thuja are preferentially oriented near the horizontal and are much less random than for the other species. Comparisons of distributions on individual twigs, whole branches, entire trees, and groups of trees were done to test the hypothesis that angle distributions will depend on scale, and these comparisons indicated that the apparent randomness and goodness-of-fit increased on passing to each larger unit (twigs up to groups of trees).Key words: conifer, leaf angles, ellipsoidal distribution.


Sign in / Sign up

Export Citation Format

Share Document