Yield stability and phenotypic plasticity of Populus spp. clones growing in environmental gradients: I-yield stability under field conditions

2020 ◽  
Vol 463 ◽  
pp. 117995
Author(s):  
Javier A. Alvarez ◽  
Silvia C. Cortizo ◽  
Javier E. Gyenge
2021 ◽  
Vol 288 (1953) ◽  
pp. 20210428
Author(s):  
Staffan Jacob ◽  
Delphine Legrand

Intra- and interspecific variability can both ensure ecosystem functions. Generalizing the effects of individual and species assemblages requires understanding how much within and between species trait variation is genetically based or results from phenotypic plasticity. Phenotypic plasticity can indeed lead to rapid and important changes of trait distributions, and in turn community functionality, depending on environmental conditions, which raises a crucial question: could phenotypic plasticity modify the relative importance of intra- and interspecific variability along environmental gradients? We quantified the fundamental niche of five genotypes in monocultures for each of five ciliate species along a wide thermal gradient in standardized conditions to assess the importance of phenotypic plasticity for the level of intraspecific variability compared to differences between species. We showed that phenotypic plasticity strongly influences trait variability and reverses the relative extent of intra- and interspecific variability along the thermal gradient. Our results show that phenotypic plasticity may lead to either increase or decrease of functional trait variability along environmental gradients, making intra- and interspecific variability highly dynamic components of ecological systems.


1976 ◽  
Vol 27 (4) ◽  
pp. 519 ◽  
Author(s):  
MA Khan ◽  
AD Bradshaw

Six varieties of Linum usitatissimum, three of flax and three of linseed, were grown under field conditions at six different spacings, from 1 to 32 in. (2.5–81.3 cm) apart. There was abundant evidence of varietal differences in phenotypic plasticity in response to variation in spacing. This indicates that response to spacing is a genetically controlled and not an automatic phenomenon. The major differences were between the flax and linseed groups; linseed varieties were more responsive in branching. However, there were considerable differences between varieties within each group. Different characters showed very different patterns and degrees of response, which indicated that control of response operates on an individual character rather than on a whole organisms basis. Plausible explanations in terms of natural selection can be given for the origin of many of the differences in the response of varieties and in characters. Taken as a whole, the results suggest that there is precise genetic control of the epigenetic processes involved in the response of plants to spacing, and that evolution of different patterns of response can easily occur. _______________ *Part 1, Evolution, 22: 496-516 (1968).


2019 ◽  
Author(s):  
Ronaldo de Carvalho Augusto ◽  
Aki Minoda ◽  
Oliver Rey ◽  
Céline Cosseau ◽  
Cristian Chaparro ◽  
...  

AbstractPhenotypic plasticity is an important feature of biological systems that is likely to play a major role in the future adaptation of organisms to the ongoing global changes. It may allow an organism to produce alternative phenotypes in responses to environmental cues. Modifications in the phenotype can be reversible but are sometimes enduring and can even span over generations. The notion of phenotypic plasticity was conceptualized in the early 20th century by Richard Woltereck. He introduced the idea that the combined relations of a phenotypic character and all environmental gradients that influence on it can be defined as “norm of reaction”. Norms of reaction are specific to species and to lineages within species, and they are heritable. He postulated that reaction norms can progressively be shifted over generations depending on the environmental conditions. One of his biological models was the water-flee daphnia. Woltereck proposed that enduring phenotypic modifications and gene mutations could have similar adaptive effects, and he postulated that their molecular bases would be different. Mutations occurred in genes, while enduring modifications were based on something he called the Matrix. He suggested that this matrix (i) was associated with the chromosomes, (ii) that it was heritable, (iii) it changed during development of the organisms, and (iv) that changes of the matrix could be simple chemical substitutions of an unknown, but probably polymeric molecule. We reasoned that the chromatin has all postulated features of this matrix and revisited Woltereck’s classical experiments with daphnia. We developed a robust and rapid ATAC-seq technique that allows for analyzing chromatin of individual daphnia and show here (i) that this technique can be used with minimal expertise in molecular biology, and (ii) we used it to identify open chromatin structure in daphnia exposed to different environmental cues. Our result indicates that chromatin structure changes consistently in daphnia upon this exposure confirming Woltereck’s classical postulate.


2010 ◽  
Vol 278 (1706) ◽  
pp. 789-797 ◽  
Author(s):  
Vicencio Oostra ◽  
Maaike A. de Jong ◽  
Brandon M. Invergo ◽  
Fanja Kesbeke ◽  
Franziska Wende ◽  
...  

Polyphenisms—the expression of discrete phenotypic morphs in response to environmental variation—are examples of phenotypic plasticity that may potentially be adaptive in the face of predictable environmental heterogeneity. In the butterfly Bicyclus anynana , we examine the hormonal regulation of phenotypic plasticity that involves divergent developmental trajectories into distinct adult morphs for a suite of traits as an adaptation to contrasting seasonal environments. This polyphenism is induced by temperature during development and mediated by ecdysteroid hormones. We reared larvae at separate temperatures spanning the natural range of seasonal environments and measured reaction norms for ecdysteroids, juvenile hormones (JHs) and adult fitness traits. Timing of peak ecdysteroid, but not JH titres, showed a binary response to the linear temperature gradient. Several adult traits (e.g. relative abdomen mass) responded in a similar, dimorphic manner, while others (e.g. wing pattern) showed a linear response. This study demonstrates that hormone dynamics can translate a linear environmental gradient into a discrete signal and, thus, that polyphenic differences between adult morphs can already be programmed at the stage of hormone signalling during development. The range of phenotypic responses observed within the suite of traits indicates both shared regulation and independent, trait-specific sensitivity to the hormone signal.


2019 ◽  
Vol 157 ◽  
pp. 24-32 ◽  
Author(s):  
Manuel Vivanco Bercovich ◽  
Nadine Schubert ◽  
Antonella C. Almeida Saá ◽  
João Silva ◽  
Paulo A. Horta

2008 ◽  
Vol 4 (4) ◽  
pp. 777-785 ◽  
Author(s):  
Sagi Nahum ◽  
Moshe Inbar ◽  
Gidi Ne’eman ◽  
Rachel Ben-Shlomo

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2144
Author(s):  
Rodolfo Gentili ◽  
Roberto Ambrosini ◽  
Benno A. Augustinus ◽  
Sarah Caronni ◽  
Elisa Cardarelli ◽  
...  

Studies on plant growth and trait variation along environmental gradients can provide important information for identifying drivers of plant invasions and for deriving management strategies. We used seeds of the annual plant invader Ambrosia artemisiifolia L. (common ragweed) collected from an agricultural site in Northern Italy (226 m. a.s.l; Mean Annual Air Temperature: 12.9 °C; precipitations: 930 mm) to determine variation in growth trajectories and plant traits when grown along a 1000-m altitudinal gradient in Northern Italy, and under different temperature conditions in the growth chamber (from 14/18 °C to 26/30 °C, night/day), using a non-liner modeling approach. Under field conditions, traits related to plant height (maximum height, stem height, number of internodes) followed a three-parameter logistic curve. In contrast, leaf traits (lateral spread, number of leaves, leaf length and width) followed non-monotonic double-Richards curves that captured the decline patterns evident in the data. Plants grew faster, reaching a higher maximum plant height, and produced more biomass when grown at intermediate elevations. Under laboratory conditions, plants exhibited the same general growth trajectory of field conditions. However, leaf width did not show the recession after the maximum value shown by plants grown in the field, although the growth trajectories of some individuals, particularly those grown at 18 °C, showed a decline at late times. In addition, the plants grown at lower temperatures exhibited the highest value of biomass and preserved reproductive performances (e.g., amount of male inflorescence, pollen weight). From our findings, common ragweed exhibits a high phenotypic plasticity of vegetative and reproductive traits in response to different altitudes and temperature conditions. Under climate warming, this plasticity may facilitate the shift of the species towards higher elevation, but also the in situ resistance and (pre)adaptation of populations currently abundant at low elevations in the invasive European range. Such results may be also relevant for projecting the species management such as the impact by possible biocontrol agents.


Sign in / Sign up

Export Citation Format

Share Document