Mixed vs. monospecific mountain forests in response to climate change: structural and growth perspectives of Norway spruce and European beech

2021 ◽  
Vol 488 ◽  
pp. 119019
Author(s):  
Zdeněk Vacek ◽  
Anna Prokůpková ◽  
Stanislav Vacek ◽  
Daniel Bulušek ◽  
Václav Šimůnek ◽  
...  
2021 ◽  
pp. 141-187
Author(s):  
H. Pretzsch ◽  
T. Hilmers ◽  
E. Uhl ◽  
M. del Río ◽  
A. Avdagić ◽  
...  

AbstractUnderstanding tree and stand growth dynamics in the frame of climate change calls for large-scale analyses. For analysing growth patterns in mountain forests across Europe, the CLIMO consortium compiled a network of observational plots across European mountain regions. Here, we describe the design and efficacy of this network of plots in monospecific European beech and mixed-species stands of Norway spruce, European beech, and silver fir.First, we sketch the state of the art of existing monitoring and observational approaches for assessing the growth of mountain forests. Second, we introduce the design, measurement protocols, as well as site and stand characteristics, and we stress the innovation of the newly compiled network. Third, we give an overview of the growth and yield data at stand and tree level, sketch the growth characteristics along elevation gradients, and introduce the methods of statistical evaluation. Fourth, we report additional measurements of soil, genetic resources, and climate smartness indicators and criteria, which were available for statistical evaluation and testing hypotheses. Fifth, we present the ESFONET (European Smart Forest Network) approach of data and knowledge dissemination. The discussion is focussed on the novelty and relevance of the database, its potential for monitoring, understanding and management of mountain forests toward climate smartness, and the requirements for future assessments and inventories.In this chapter, we describe the design and efficacy of this network of plots in monospecific European beech and mixed-species stands of Norway spruce, European beech, and silver fir. We present how to acquire and evaluate data from individual trees and the whole stand to quantify and understand the growth of mountain forests in Europe under climate change. It will provide concepts, models, and practical hints for analogous trans-geographic projects that may be based on the existing and newly recorded data on forests.


2014 ◽  
Vol 60 (2) ◽  
pp. 119-132 ◽  
Author(s):  
C Hartl-Meier ◽  
C Zang ◽  
C Dittmar ◽  
J Esper ◽  
A Göttlein ◽  
...  

Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 431
Author(s):  
Jiří Remeš ◽  
Karel Pulkrab ◽  
Lukáš Bílek ◽  
Vilém Podrázský

Climate change is increasingly affecting forest ecosystems. Modifying the species composition towards species mixtures with a higher potential to mitigate the negative effect of climate change is one of the basic silvicultural measures. Potential economic and production impacts of these actions need to be assessed. This study therefore aims to evaluate the economic and production effect of species composition change as a result of the adaptation of forest ecosystems to climate change. The differences between the value production of Norway spruce (Picea abies /L./Karst.), Douglas fir (Pseudotsuga menziessi/MIRBEL/FRANCO) and European beech (Fagus sylvatica L.) on fresh soils (represented mainly by mesotrophic cambisols), and soils affected by ground water (mainly pseudogley forms of cambisols and pseudogleys) were evaluated. The study was conducted on the area of the forest enterprise of the Czech University of Life Sciences (UFE) situated in the Central Bohemia region. For a model comparison of height and volume growth of Douglas fir and Norway spruce in this area, all stands (pure and mixed) with both species represented were analysed using the data from the current forest management plan and Korf’s growth function. The course of current and mean height increments over time is very similar, yet with constantly higher annual increments for Douglas fir. In 100 years, the mean stand height of Douglas fir is 6 m larger than that of Norway spruce. Production and economic potential were also evaluated. At the rotation age, the volume and value production of Douglas fir was 30% to 50% higher than that of Norway spruce. A higher share of Douglas fir in the total forest area would lead to an important value increment of the forests in the study area. Different results were achieved by comparing the yield potential of Norway spruce with European beech, which most often substitutes spruce at middle altitudes. Beech potential yield is only 40–55% of the spruce yield level.


2019 ◽  
Vol 92 (5) ◽  
pp. 512-522 ◽  
Author(s):  
Torben Hilmers ◽  
Admir Avdagić ◽  
Leszek Bartkowicz ◽  
Kamil Bielak ◽  
Franz Binder ◽  
...  

Abstract Mixed mountain forests of European beech (Fagus sylvatica L.), Norway spruce (Picea abies (L.) Karst), and silver fir (Abies alba Mill.) cover a total area of more than 10 million hectares in Europe. Due to altitudinal zoning, these forests are particularly vulnerable to climate change. However, as little is known about the long-term development of the productivity and the adaptation and mitigation potential of these forest systems in Europe, reliable information on productivity is required for sustainable forest management. Using generalized additive mixed models this study investigated 60 long-term experimental plots and provides information about the productivity of mixed mountain forests across a variety of European mountain areas in a standardized way for the first time. The average periodic annual volume increment (PAI) of these forests amounts to 9.3 m3ha−1y−1. Despite a significant increase in annual mean temperature the PAI has not changed significantly over the last 30 years. However, at the species level, we found significant changes in the growth dynamics. While beech had a PAI of 8.2 m3ha−1y−1 over the entire period (1980–2010), the PAI of spruce dropped significantly from 14.2 to 10.8 m3ha−1y−1, and the PAI of fir rose significantly from 7.2 to 11.3 m3ha−1y−1. Consequently, we observed stable stand volume increments in relation to climate change.


2019 ◽  
Vol 65 (2) ◽  
pp. 129-144 ◽  
Author(s):  
Zdeněk Vacek ◽  
Stanislav Vacek ◽  
Jiří Slanař ◽  
Lukáš Bílek ◽  
Daniel Bulušek ◽  
...  

Abstract In time of climate change, close-to-nature silviculture is growing in importance as a tool for future forest management. The paper study the tree layer and natural regeneration of monospecific Norway spruce (Picea abies [L.] Karst.), trough mixed spruce-beech to dominant European beech (Fagus sylvatica L.) forests in Jizerské hory Mts., the Czech Republic. In the locality, shelterwood and selection system have been applied since 2000. The research objectives were to evaluate production parameters, structural diversity, species richness, natural regeneration dynamics and radial growth of individual tree species in relation to climatic factors and air pollution. The stand volume on permanent research plots amounted to 441 – 731 m3 ha−1 in initial stage of transformation. Natural regeneration showed high expansion of beech and decrease of spruce compared to mature tree species composition. Radial growth of spruce was in significant negative correlation with SO2 and NOX concentrations compared to no effect on beech increment. Moreover, spruce was more sensitive to significant years with extreme low radial growth. Beech was more stable in radial growth. Spruce was more resistant to air pollution and climatic stress in mixed stands. Low temperature was limiting factor of radial growth together with climate extremes (such as strong frosts and more frequent droughts) and biotic factors (bark beetle, beech scale). Close-to-nature management supporting admixed tree species should lead in future to diversification of stand structure toward higher species, spatial and age structure to mitigate negative effect of climatic change.


Forests ◽  
2016 ◽  
Vol 7 (12) ◽  
pp. 282 ◽  
Author(s):  
Filip Oulehle ◽  
Michal Růžek ◽  
Karolina Tahovská ◽  
Jiří Bárta ◽  
Oldřich Myška

Ecosystems ◽  
2021 ◽  
Author(s):  
Laura Marqués ◽  
Drew M. P. Peltier ◽  
J. Julio Camarero ◽  
Miguel A. Zavala ◽  
Jaime Madrigal-González ◽  
...  

AbstractLegacies of past climate conditions and historical management govern forest productivity and tree growth. Understanding how these processes interact and the timescales over which they influence tree growth is critical to assess forest vulnerability to climate change. Yet, few studies address this issue, likely because integrated long-term records of both growth and forest management are uncommon. We applied the stochastic antecedent modelling (SAM) framework to annual tree-ring widths from mixed forests to recover the ecological memory of tree growth. We quantified the effects of antecedent temperature and precipitation up to 4 years preceding the year of ring formation and integrated management effects with records of harvesting intensity from historical forest management archives. The SAM approach uncovered important time periods most influential to growth, typically the warmer and drier months or seasons, but variation among species and sites emerged. Silver fir responded primarily to past climate conditions (25–50 months prior to the year of ring formation), while European beech and Scots pine responded mostly to climate conditions during the year of ring formation and the previous year, although these responses varied among sites. Past management and climate interacted in such a way that harvesting promoted growth in young silver fir under wet and warm conditions and in old European beech under drier and cooler conditions. Our study shows that the ecological memory associated with climate legacies and historical forest management is species-specific and context-dependent, suggesting that both aspects are needed to properly evaluate forest functioning under climate change.


Sign in / Sign up

Export Citation Format

Share Document