Tree regeneration in active and passive cloud forest restoration: Functional groups and timber species

2021 ◽  
Vol 489 ◽  
pp. 119050
Author(s):  
Tarin Toledo-Aceves ◽  
Alma L. Trujillo-Miranda ◽  
Fabiola López-Barrera
2019 ◽  
Vol 11 (21) ◽  
pp. 2585 ◽  
Author(s):  
Michael Fromm ◽  
Matthias Schubert ◽  
Guillermo Castilla ◽  
Julia Linke ◽  
Greg McDermid

Monitoring tree regeneration in forest areas disturbed by resource extraction is a requirement for sustainably managing the boreal forest of Alberta, Canada. Small remotely piloted aircraft systems (sRPAS, a.k.a. drones) have the potential to decrease the cost of field surveys drastically, but produce large quantities of data that will require specialized processing techniques. In this study, we explored the possibility of using convolutional neural networks (CNNs) on this data for automatically detecting conifer seedlings along recovering seismic lines: a common legacy footprint from oil and gas exploration. We assessed three different CNN architectures, of which faster region-CNN (R-CNN) performed best (mean average precision 81%). Furthermore, we evaluated the effects of training-set size, season, seedling size, and spatial resolution on the detection performance. Our results indicate that drone imagery analyzed by artificial intelligence can be used to detect conifer seedling in regenerating sites with high accuracy, which increases with the size in pixels of the seedlings. By using a pre-trained network, the size of the training dataset can be reduced to a couple hundred seedlings without any significant loss of accuracy. Furthermore, we show that combining data from different seasons yields the best results. The proposed method is a first step towards automated monitoring of forest restoration/regeneration.


2014 ◽  
Vol 22 (4) ◽  
pp. 472-479 ◽  
Author(s):  
Koen W. Thijs ◽  
Raf Aerts ◽  
Pieter Van de Moortele ◽  
Winfred Musila ◽  
Hubert Gulinck ◽  
...  

2006 ◽  
Vol 22 (4) ◽  
pp. 431-440 ◽  
Author(s):  
Miguel Angel Muñiz-Castro ◽  
Guadalupe Williams-Linera ◽  
José María Rey Benayas

Secondary succession was studied in a Mexican cloud forest region along a chronosequence of 15 abandoned pastures (0.25–80 y). Our objective was to determine the effects of distance from the forest border on successional vegetation structure and woody species richness along the chronosequence. Vegetation structure similar to that of mature forests recovered over 40–50 y, both close to (0–10 m) and away from (40–50 m) the border. Total woody species richness was similar for both distances but species composition differed significantly. When primary forest species were analysed separately, basal area, height, abundance and richness were all significantly higher close to the forest border. Primary species such as Quercus spp. (barochorous-synzoochorous) and Carpinus caroliniana (anemochorous) had lower basal area, density and height away from the border than close to it. Secondary species such as Lippia myriocephala (anemochorous) and Myrsine coriacea (endozoochorous) did not differ in their rate of colonization between distances. The limitation of seed dispersal and establishment for primary woody species away from forest borders suggests that propagules need to be introduced to accelerate forest restoration.


2017 ◽  
Vol 10 (2) ◽  
pp. 369-375 ◽  
Author(s):  
P Ortiz-Colín ◽  
T Toledo-Aceves ◽  
F López-Barrera ◽  
P Gerez-Fernández

2020 ◽  
Vol 242 ◽  
pp. 108400 ◽  
Author(s):  
J.M. Díaz-García ◽  
F. López-Barrera ◽  
T. Toledo-Aceves ◽  
E. Andresen ◽  
E. Pineda

2019 ◽  
Vol 11 (13) ◽  
pp. 3578 ◽  
Author(s):  
Salek ◽  
Harmacek ◽  
Jerabkova ◽  
Topacoglu ◽  
Machar

Thorny shrubs are considered as an important driver in the natural development of temperate forest structures, particularly in European lowland forests. We assessed the current role of thorny shrubs in the regeneration of deciduous tree species under heavy browsing pressure in a central European temperate forested landscape. The study’s military training area offered a unique opportunity to investigate the processes in which deciduous tree seedlings grew under thorny shrubs and in the close vicinity of thorny shrubs in a landscape with a high density of large herbivores (red deer and sika deer). We assessed the number of seedlings, species composition, seedling height, and degree of browsing damage, and their relationship to study plots elevation, thorny shrub species, coverage, and height. The regenerated tree seedlings were mostly detected as common ash (Fraxinus excelsior) and wild cherry (Cerasus avium). The species of thorny shrubs were blackthorn (Prunus spinosa), hawthorn (Crataegus sp.), and wild rose (Rosa sp.). We found that the thorny shrubs protected the tree seedlings from browsers to a large extent. However, the effects of thorny shrubs on the tree seedlings' characteristics varied among the shrub species. While results revealed significant effects of hawthorn and wild rose on the tree seedlings' abundance and survival, blackthorn’s negative effect of shading the tree seedlings outweighed its protective role. These results indicated a possible mechanism that enabled the regeneration of deciduous tree species under large herbivore pressure. These results can be applied in the landscape planning and forest management of deciduous tree regeneration and forest restoration in temperate forested lowland landscapes, where high densities of large herbivores (without the presence of large predators) usually occur.


2020 ◽  
Vol 12 (19) ◽  
pp. 7945
Author(s):  
Dany A. Cotrina Sánchez ◽  
Elgar Barboza Castillo ◽  
Nilton B. Rojas Briceño ◽  
Manuel Oliva ◽  
Cristóbal Torres Guzman ◽  
...  

The Andean-Amazonian landscape has been universally recognized for its wide biodiversity, and is considered as global repository of ecosystem services. However, the severe loss of forest cover and rapid reduction of the timber species seriously threaten this ecosystem and biodiversity. In this study, we have modeled the distribution of the ten most exploited timber forest species in Amazonas (Peru) to identify priority areas for forest conservation and restoration. Statistical and cartographic protocols were applied with 4454 species records and 26 environmental variables using a Maximum Entropy model (MaxEnt). The result showed that the altitudinal variable was the main regulatory factor that significantly controls the distribution of the species. We found that nine species are distributed below 1000 m above sea level (a.s.l.), except Cedrela montana, which was distributed above 1500 m a.s.l., covering 40.68%. Eight of 10 species can coexist, and the species with the highest percentage of potential restoration area is Cedrela montana (14.57% from Amazonas). However, less than 1.33% of the Amazon has a potential distribution of some species and is protected under some category of conservation. Our study will contribute as a tool for the sustainable management of forests and will provide geographic information to complement forest restoration and conservation plans.


Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 938 ◽  
Author(s):  
Markus Höhl ◽  
Vianny Ahimbisibwe ◽  
John A. Stanturf ◽  
Peter Elsasser ◽  
Michael Kleine ◽  
...  

Research Highlights: The global Forest Landscape Restoration ambitions could be impaired by projects that ignore key principles such as the engagement of local communities in decision making and implementation, equitable benefit sharing, and monitoring for adaptive management. This entails the danger of continued degradation, disappointed local stakeholders, and ultimately, project failure. Other projects face technical problems related to tree establishment and nursery production. Background and Objectives: There are high hopes for Forest and Landscape Restoration to regain ecosystem integrity and enhance human well-being in deforested and degraded areas. We highlight various problems and success factors experienced during project implementation on a global scale. Materials and Methods: We use data from a global online survey to identify common obstacles and success factors for the implementation of forest restoration. Results: While the majority of respondents reported successful projects, others indicate drastic problems and failed projects. Major obstacles to forest restoration experienced by survey respondents were a lack of local stakeholder involvement and a mismatch between goals of local communities and restoration managers, as well as environmental, anthropogenic, and technical barriers to tree regeneration. Conclusions: When local communities, their goals, and needs are disregarded in project planning and implementation, as reported from various cases in our survey and the limited available literature, there is a risk of project failure. Failed projects and disappointed stakeholders, as well as discouraged funders and policy-makers, could lessen the momentum of global forest restoration ambitions. Adhering to key principles of Forest and Landscape Restoration can promote much-needed community support, with the potential to overcome barriers to forest regeneration and enable communities for the protection, management, and monitoring of the restored forests beyond the limited project and funding periods. Research is needed to gain a better understanding of the perception of local communities towards restoration activities. Further studies on the implementation of forest restoration at the intersection of environmental factors, socioeconomic conditions, forest regeneration/silviculture, and nursery production are needed.


Author(s):  
Siunelly Landero-Lozada ◽  
Tarin Toledo-Aceves ◽  
Fabiola López-Barrera ◽  
Vinicio J. Sosa ◽  
Neptalí Ramírez-Marcial

2020 ◽  
Vol 68 (S1) ◽  
pp. S103-S114
Author(s):  
Luis Acosta-Vargas ◽  
Adriana E. Rovere ◽  
Jorge Camacho-Sandoval

Introduction: Isla del Coco is the only island in the Eastern Tropical Pacific with humid tropical forests; 296 plant species are reported, of them, 22% are endemic. Their ecology is poorly understood. Deforestation and the introduction of rats, feral pigs and white-tailed deer are the primary agents of forest degradation. After more than 120 years, the deforested areas have never recovered the native forest. Objective: To analyse if the deforested area keeps its resilience, we evaluated the natural regeneration and ecological processes associated. Methods: From August 2016 to June 2018, we conducted a restoration experiment consisting of a randomized complete blocks design including vegetation cutting, vegetation uprooting and controls as treatments. Plots were protected with an exclusion fence to avoid herbivores. Results: There were no differences between plant cutting and uprooting in stimulating natural regeneration. We only recorded the seedlings of two tree species, 35 individuals of Cecropia pittieri and three of Sacoglottis holdridgei, both endemic. Their regeneration established during the first 15 months mainly. At the end of the experiment, the structure and composition of the vegetation changed from bushes dominated by Entada gigas (28%) and Clidemia strigillosa (12%) to grasses dominated by Paspalum conjugatum (39%). Entada gigas has a high recolonizing potential with a growing rate of 1.6±0.2m/month. Conclusions: As filters for restoration we determined herbivores, which pose a strong negative impact in the development of the forest; the exhausted seed bank of tree species and scarce or null seed dispersion.


Sign in / Sign up

Export Citation Format

Share Document