Spatial variation in soil respiration is determined by forest canopy structure through soil water content in a mature beech forest

2021 ◽  
Vol 501 ◽  
pp. 119673
Author(s):  
Yihan Cai ◽  
Takahiro Nishimura ◽  
Hideyuki Ida ◽  
Mitsuru Hirota
2010 ◽  
Vol 25 (5) ◽  
pp. 811-827 ◽  
Author(s):  
Vincent J. Pacific ◽  
Brian L. McGlynn ◽  
Diego A. Riveros-Iregui ◽  
Daniel L. Welsch ◽  
Howard E. Epstein

1999 ◽  
Vol 56 (3) ◽  
pp. 221-226 ◽  
Author(s):  
Daniel Epron ◽  
Lætitia Farque ◽  
Éric Lucot ◽  
Pierre-Marie Badot

2005 ◽  
Vol 6 (6) ◽  
pp. 812-824 ◽  
Author(s):  
T. B. Parkin ◽  
T. C. Kaspar ◽  
Z. Senwo ◽  
J. H. Prueger ◽  
J. L. Hatfield

Abstract Soil respiration is an important component of the carbon dynamics of terrestrial ecosystems. Many factors exert controls on soil respiration, including temperature, soil water content, organic matter, soil texture, and plant root activity. This study was conducted to quantify soil respiration in the Walnut Creek watershed in central Iowa, and to investigate the factors controlling this process. Six agricultural fields were identified for this investigation: three of the fields were cropped with soybean [Glycine max (L.) Merr.] and three were cropped with corn (Zea mays L.). Within each field, soil respiration was measured at nine locations, with each location corresponding to one of three general landscape positions (summit, side slope, and depression). Soil respiration was measured using a portable vented chamber connected to an infrared gas analyzer. Soil samples were collected at each location for the measurement of soil water content, pH, texture, microbial biomass, and respiration potential. Field respiration rates did not show a significant landscape effect. However, there was a significant crop effect, with respiration from cornfields averaging 37.5 g CO2 m−2 day−1 versus an average respiration of 13.1 g CO2 m−2 day−1 in soybean fields. In contrast, laboratory measurements of soil respiration potential, which did not include plant roots, showed a significant landscape effect and an insignificant cropping system effect. Similar relationships were observed for soil organic C and microbial biomass. Additional analyses indicate that corn roots may be more important than soybean roots in their contribution to surface CO2 flux, and that root respiration masked landscape effects on total soil respiration. Also, the failure to account for soil respiration may lead to biased estimates of net primary production measured by eddy covariance.


2015 ◽  
Vol 35 (19) ◽  
Author(s):  
张川 Zhang Chuan ◽  
张伟 Zhang Wei ◽  
陈洪松 Chen Hongsong ◽  
聂云鹏 Nie Yunpeng ◽  
叶莹莹 Ye yingying ◽  
...  

2012 ◽  
Vol 9 (11) ◽  
pp. 16565-16588 ◽  
Author(s):  
S. Castaldi ◽  
T. Bertolini ◽  
A. Valente ◽  
T. Chiti ◽  
R. Valentini

Abstract. Most recently atmospheric studies have evidenced the imprint of large N2O sources in tropical/subtropical lands. This source might be attributed to agricultural areas as well as to natural humid ecosystems. The uncertainty related to both sources is very high, due to the paucity of data and small frequency of sampling in tropical studies. This is particularly relevant for the African continent. The principal objective of this work was to quantify the annual budget of N2O emissions in an African tropical rain forest. Soil N2O emissions were measured over 19 months in Ghana, National Park of Ankasa, in upland and lowland areas, for a total of 119 days of observation. The calculated annual average emission was 2.33 ± 0.20 kg N-N2O ha−1yr−1, taking into account the proportion of upland vs. lowland, as the two areas showed significantly different fluxes, the lowland being characterized by lower N2O emissions. N2O fluxes peaked between June and August and were significantly correlated with soil respiration on a daily and monthly basis. No clear correlation was found in the upland areas between N2O fluxes and soil water content or rain whereas in the lowland soil water content concurred with soil respiration in determining N2O flux variability. The N2O source strength calculated in this study, very close to those reported for the other two available studies in African rain forests and to the estimated mean derived from worldwide studies in humid tropical forests (2.96 ± 2.0 kg N-N2O ha−1 yr−1), supports the concept that tropical humid forests represent the strongest natural source of N2O emissions, most probably the strongest source of N2O in the African continent.


2020 ◽  
Vol 34 (12) ◽  
Author(s):  
Sol C. Cooperdock ◽  
Christine V. Hawkes ◽  
Derry R. Xu ◽  
Daniel O. Breecker

Sign in / Sign up

Export Citation Format

Share Document