Modern imaging modalities in forensic anthropology and the potential of low-dose X-rays

2020 ◽  
Vol 23 ◽  
pp. 200406
Author(s):  
B. Mamabolo ◽  
A. Alblas ◽  
D. Brits
2002 ◽  
Vol 21 (2) ◽  
pp. 85-90 ◽  
Author(s):  
L E Feinendegen

This review first summarizes experimental data on biological effects of different concentrations of ROS in mammalian cells and on their potential role in modifying cell responses to toxic agents. It then attempts to link the role of steadily produced metabolic ROS at various concentrations in mammalian cells to that of environmentally derived ROS bursts from exposure to ionizing radiation. The ROS from both sources are known to both cause biological damage and change cellular signaling, depending on their concentration at a given time. At low concentrations signaling effects of ROS appear to protect cellular survival and dominate over damage, and the reverse occurs at high ROS concentrations. Background radiation generates suprabasal ROS bursts along charged particle tracks several times a year in each nanogram of tissue, i.e., average mass of a mammalian cell. For instance, a burst of about 200 ROS occurs within less than a microsecond from low-LET irradiation such as X-rays along the track of a Compton electron (about 6 keV, ranging about 1 μm). One such track per nanogram tissue gives about 1 mGy to this mass. The number of instantaneous ROS per burst along the track of a 4-meV ¬-particle in 1 ng tissue reaches some 70000. The sizes, types and sites of these bursts, and the time intervals between them directly in and around cells appear essential for understanding low-dose and low dose-rate effects on top of effects from endogenous ROS. At background and low-dose radiation exposure, a major role of ROS bursts along particle tracks focuses on ROS-induced apoptosis of damage-carrying cells, and also on prevention and removal of DNA damage from endogenous sources by way of temporarily protective, i.e., adaptive, cellular responses. A conclusion is to consider low-dose radiation exposure as a provider of physiological mechanisms for tissue homoeostasis.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Xiao Xing ◽  
Chi Zhang ◽  
Minglong Shao ◽  
Qingyue Tong ◽  
Guirong Zhang ◽  
...  

Repetitive exposure of diabetic mice to low-dose radiation (LDR) at 25 mGy could significantly attenuate diabetes-induced renal inflammation, oxidative damage, remodeling, and dysfunction, for which, however, the underlying mechanism remained unknown. The present study explored the effects of LDR on the expression and function of Akt and Nrf2 in the kidney of diabetic mice. C57BL/6J mice were used to induce type 1 diabetes with multiple low-dose streptozotocin. Diabetic and age-matched control mice were irradiated with whole body X-rays at either single 25 mGy and 75 mGy or accumulated 75 mGy (25 mGy daily for 3 days) and then sacrificed at 1–12 h for examining renal Akt phosphorylation and Nrf2 expression and function. We found that 75 mGy of X-rays can stimulate Akt signaling pathway and upregulate Nrf2 expression and function in diabetic kidneys; single exposure of 25 mGy did not, but three exposures to 25 mGy of X-rays could offer a similar effect as single exposure to 75 mGy on the stimulation of Akt phosphorylation and the upregulation of Nrf2 expression and transcription function. These results suggest that single 75 mGy or multiple 25 mGy of X-rays can stimulate Akt phosphorylation and upregulate Nrf2 expression and function, which may explain the prevention of LDR against the diabetic nephropathy mentioned above.


1979 ◽  
Vol 16 (3) ◽  
pp. 299-302 ◽  
Author(s):  
C. Michel ◽  
H. Blattmann ◽  
I. Cordt-Riehle ◽  
H. Fritz-Niggli

2019 ◽  
pp. 125-139
Author(s):  
Francesco Ceci ◽  
Stefano Fanti ◽  
Jochen Walz

2015 ◽  
Vol 183 (1) ◽  
pp. 42-51 ◽  
Author(s):  
Caitlin E. Mills ◽  
Christopher Thome ◽  
David Koff ◽  
David W. Andrews ◽  
Douglas R. Boreham

Dose-Response ◽  
2018 ◽  
Vol 16 (3) ◽  
pp. 155932581878984 ◽  
Author(s):  
Jie Cheng ◽  
Fengsheng Li ◽  
Guanjun Wang ◽  
Weiying Guo ◽  
Shan Huang ◽  
...  

To explore an optimal frequency of whole-body low-dose radiation (LDR) to protect the kidney from diabetes, type 1 diabetic mice were induced with multiple injections of low-dose streptozotocin in male C57BL/6J mice. Diabetic or age-matched normal mice received whole-body exposure to 12.5 or 25 mGy either every other day or weekly for 4 or 8 weeks. Diabetes decreased the urinary creatinine and increased the microalbumin in urine, renal accumulation of 3-nitrotyrosine and 4-hydroxynonenal, and renal expression of collagen IV and fibronectin. All these renal pathological and functional changes in diabetic mice were significantly attenuated by exposure to LDR at all regimens. However, whole-body exposure of diabetic mice to 25 mGy weekly and to 12.5 mGy every other day for 8 weeks provided a better prevention of diabetic nephropathy than other LDR regimens. Furthermore, whole-body exposure to 25 mGy weekly for 8 weeks showed no detectable effect on the kidney of normal mice, but whole-body exposure to normal mice at 12.5 mGy every other day for 8 weeks increased urinary microalbumin and renal expression of collagen IV and fibronectin. These results suggest that whole-body exposure to LDR at 25 mGy weekly is the optimal condition of LDR to protect the kidney from diabetes.


1963 ◽  
Vol 157 (969) ◽  
pp. 536-561 ◽  

Resting potentials, action potentials, and miniature end-plate potentials have been re­corded from isolated phrenic-diaphragm preparations of the rat during and after irradiation with X-rays. Relatively small doses of a few thousand roentgens have no obvious effect on the preparation for many hours but larger doses, of the order of 70 to 150 kr irreversibly block neuromuscular transmission. The block is not accompanied by any change in the size of action potentials, resting potentials, membrane constants or miniature potentials recorded in the muscle with intracellular electrodes, or in the size of action potentials recorded in the nerve. Records made at the motor end-plate show that the cause of the block is a ‘pre-synaptic ’ failure of impulse propagation in the intramuscular part of the nerve. The time course of the failure depends largely on the rate at which X-rays are delivered to the pre­paration: at a high dose-rate (70kr/min) the block develops rapidly and is accompanied by an increase in the frequency of miniature potentials; at a low dose-rate (7 kr/min) larger doses are required, the latency is longer and the miniature potentials continue at a normal frequency. The sequence in which different parts of the muscle become blocked, the abrupt nature of the failure at an individual motor end-plate, and the increase in frequency of the miniature potentials together suggest that the action of X-rays is to block conduction in the nerve near its terminals, possibly by depolarizing points where the axons branch and the safety factor for the propagation of impulses is low. The results reported in this paper do not support the hypotheses that small doses of X-rays at a high or a low dose-rate lead to an initial 'enhancement' of function or that they produce immediate and reversible changes in the permeability of excitable membranes to ions.


Sign in / Sign up

Export Citation Format

Share Document