accessory olfactory system
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 10)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Shahab Bahreini Jangjoo ◽  
Jennifer M Lin ◽  
Farhood Etaati ◽  
Sydney Fearnley ◽  
Jean-François Cloutier ◽  
...  

Abstract Glomeruli are neuropil rich regions of the main or accessory olfactory bulbs where the axons of olfactory or vomeronasal neurons and dendrites of mitral/tufted cells form synaptic connections. In the main olfactory system olfactory sensory neurons (OSNs) expressing the same receptor innervate one or two glomeruli. However, in the accessory olfactory system, vomeronasal sensory neurons (VSNs) expressing the same receptor can innervate up to 30 different glomeruli in the accessory olfactory bulb (AOB). Genetic mutation disrupting genes with a role in defining the identity/diversity of olfactory and vomeronasal neurons can alter the number and size of glomeruli. Interestingly, two cell surface molecules, Kirrel2 and Kirrel3, have been indicated as playing a critical role in the organization of axons into glomeruli in the AOB. Being able to quantify differences in glomeruli features, such as number, size or immunoreactivity for specific markers, is an important experimental approach to validate the role of specific genes in controlling neuronal connectivity and circuit formation in either control or mutant animals. Since the manual recognition and quantification of glomeruli on digital images is a challenging and time-consuming task, we generated a program in Python able to identify glomeruli in digital images and quantify their properties, such as size, number, and pixel intensity. Validation of our program indicates that our script is a fast and suitable tool for high throughput quantification of glomerular features of mouse lines with different genetic makeup.


2021 ◽  
Author(s):  
Shahab Bahreini Jangjoo ◽  
Jennifer M Lin ◽  
Farhood Etaati ◽  
Sydney Fearnley ◽  
Jean-Francois Cloutier ◽  
...  

Glomeruli are neuropil rich regions of the main or accessory olfactory bulbs where the axons of olfactory or vomeronasal neurons and dendrites of mitral/tufted cells form synaptic connections. In the main olfactory system olfactory sensory neurons (OSNs) expressing the same receptor innervate one or two glomeruli. However, in the accessory olfactory system, vomeronasal sensory neurons (VSNs) expressing the same receptor can innervate up to 30 different glomeruli in the accessory olfactory bulb (AOB). Genetic mutation disrupting genes with a role in defining the identity/diversity of olfactory and vomeronasal neurons can alter number and size of glomeruli. Interestingly, two cell surface molecules, Kirrel2 and Kirrel3, have been indicated to play a critical role in the organization of axons into glomeruli in the AOB. Being able to quantify differences in glomeruli features such as number, size or immunoreactivity for specific markers is an important experimental approach to validate the role of specific genes in controlling neuronal connectivity and circuit formation in control or mutant animals. Since the manual recognition and quantification of glomeruli on digital images is a challenging and time-consuming task, we generated a program in Python able to identify glomeruli in digital images and quantify their properties, such as size, number, and pixel intensity. Validation of our program indicates that our script is a fast and suitable tool for high throughput quantification of glomerular features of mouse lines with different genetic makeup.


Author(s):  
Raghu Ram Katreddi ◽  
Paolo E. Forni

AbstractThe vomeronasal organ (VNO) is sensory organ located in the ventral region of the nasal cavity in rodents. The VNO develops from the olfactory placode during the secondary invagination of olfactory pit. The embryonic vomeronasal structure appears as a neurogenic area where migratory neuronal populations like endocrine gonadotropin-releasing hormone-1 (GnRH-1) neurons form. Even though embryonic vomeronasal structures are conserved across most vertebrate species, many species including humans do not have a functional VNO after birth. The vomeronasal epithelium (VNE) of rodents is composed of two major types of vomeronasal sensory neurons (VSNs): (1) VSNs distributed in the apical VNE regions that express vomeronasal type-1 receptors (V1Rs) and the G protein subunit Gαi2, and (2) VSNs in the basal territories of the VNE that express vomeronasal type-2 receptors (V2Rs) and the G subunit Gαo. Recent studies identified a third subclass of Gαi2 and Gαo VSNs that express the formyl peptide receptor family. VSNs expressing V1Rs or V2Rs send their axons to distinct regions of the accessory olfactory bulb (AOB). Together, VNO and AOB form the accessory olfactory system (AOS), an olfactory subsystem that coordinates the social and sexual behaviors of many vertebrate species. In this review, we summarize our current understanding of cellular and molecular mechanisms that underlie VNO development. We also discuss open questions for study, which we suggest will further enhance our understanding of VNO morphogenesis at embryonic and postnatal stages.


2021 ◽  
Vol 383 (1) ◽  
pp. 273-287
Author(s):  
Gabriele Gerlach ◽  
Mario F. Wullimann

Abstract Teleost fish exhibit extraordinary cognitive skills that are comparable to those of mammals and birds. Kin recognition based on olfactory and visual imprinting requires neuronal circuits that were assumed to be necessarily dependent on the interaction of mammalian amygdala, hippocampus, and isocortex, the latter being a structure that teleost fish are lacking. We show that teleosts—beyond having a hippocampus and pallial amygdala homolog—also have subpallial amygdalar structures. In particular, we identify the medial amygdala and neural olfactory central circuits related to kin imprinting and kin recognition corresponding to an accessory olfactory system despite the absence of a separate vomeronasal organ.


2020 ◽  
Vol 6 (22) ◽  
pp. eaaz6868
Author(s):  
Wen Mai Wong ◽  
Jie Cao ◽  
Xingjian Zhang ◽  
Wayne I. Doyle ◽  
Luis L. Mercado ◽  
...  

The mouse accessory olfactory system (AOS) supports social and reproductive behavior through the sensation of environmental chemosignals. A growing number of excreted steroids have been shown to be potent AOS cues, including bile acids (BAs) found in feces. As is still the case with most AOS ligands, the specific receptors used by vomeronasal sensory neurons (VSNs) to detect BAs remain unknown. To identify VSN BA receptors, we first performed a deep analysis of VSN BA tuning using volumetric GCaMP6f/s Ca2+ imaging. These experiments revealed multiple populations of BA-receptive VSNs with submicromolar sensitivities. We then developed a new physiology-forward approach for identifying AOS ligand-receptor interactions, which we call Fluorescence Live Imaging for Cell Capture and RNA sequencing, or FLICCR-seq. FLICCR-seq analysis revealed five specific V1R family receptors enriched in BA-sensitive VSNs. These studies introduce a powerful new approach for ligand-receptor matching and reveal biological mechanisms underlying mammalian BA chemosensation.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Bernd Bufe ◽  
Yannick Teuchert ◽  
Andreas Schmid ◽  
Martina Pyrski ◽  
Anabel Pérez-Gómez ◽  
...  

Abstract Innate immune chemoreceptors of the formyl peptide receptor (Fpr) family are expressed by vomeronasal sensory neurons (VSNs) in the accessory olfactory system. Their biological function and coding mechanisms remain unknown. We show that mouse Fpr3 (Fpr-rs1) recognizes the core peptide motif f-MKKFRW that is predominantly present in the signal sequence of the bacterial protein MgrB, a highly conserved regulator of virulence and antibiotic resistance in Enterobacteriaceae. MgrB peptide can be produced and secreted by bacteria, and is selectively recognized by a subset of VSNs. Exposure to the peptide also stimulates VSNs in freely behaving mice and drives innate avoidance. Our data shows that Fpr3 is required for neuronal detection and avoidance of peptides derived from a conserved master virulence regulator of enteric bacteria.


2019 ◽  
pp. 132-158
Author(s):  
Gordon L. Fain

“Chemoreception and the sense of smell” is the seventh chapter of the book Sensory Transduction and begins with a general description of chemoreception, including chemotaxis in bacteria. It then describes olfaction in insects, including new discoveries of the nature of insect receptor proteins and the coding of olfaction in insects. It proceeds to review olfaction in vertebrates, beginning with the primary olfactory epithelium. It describes olfactory receptor proteins, the mechanism of olfactory transduction, and pathways of desensitization and adaptation. The basis of coding in the principal olfactory epithelium is described together with the anatomy and physiology of the olfactory bulb. A final section is provided on the accessory olfactory system and vomeronasal organ, including a description of receptor proteins, transduction cascades, and wiring to the accessory olfactory bulbs.


2019 ◽  
Author(s):  
Wen Mai Wong ◽  
Jie Cao ◽  
Xingjian Zhang ◽  
Wayne I. Doyle ◽  
Luis L. Mercado ◽  
...  

Abstract/SummaryThe mouse accessory olfactory system (AOS) supports social and reproductive behavior through the sensation of environmental chemosignals. A growing number of excreted steroids have been shown to be potent AOS cues, including bile acids (BAs) found in feces. As is still the case with most AOS ligands, the specific receptors used by vomeronasal sensory neurons (VSNs) to detect BAs remain unknown. To identify VSN BA receptors, we first performed a deep analysis of VSN BA tuning using volumetric GCaMP6f/s Ca2+ imaging. These experiments revealed both broadly and narrowly tuned populations of BA-receptive VSNs with sub-micromolar sensitivities. We then developed a new physiology-forward approach for identifying AOS ligand-receptor interactions, which we call Fluorescence Live Imaging for Cell Capture and RNA-seq, or FLICCR-seq. FLICCR-seq analysis revealed 5 specific V1R-family receptors enriched in BA-sensitive VSNs. These studies introduce a powerful new approach for ligand-receptor matching and reveal biological mechanisms underlying mammalian BA chemosensation.


2019 ◽  
Author(s):  
Ankana S. Naik ◽  
Jennifer M. Lin ◽  
Ed Zandro M. Taroc ◽  
Raghu R. Katreddi ◽  
Jesus A. Frias ◽  
...  

SummaryThe accessory olfactory system is a unique model that can give insights on how the neurons can establish and maintain their identity, and connectivity. The vomeronasal organ (VNO) contains two distinct populations of vomeronasal sensory neurons (VSNs) each with specific innervation patterns to the accessory olfactory bulb (AOB). Though morphogenic signals are critical in defining various neuronal populations, the morphogenic signaling profiles that influence each VSN population remains unknown. Here, we found a pronounced BMP signaling gradient within the basal VSNs. By generating Smad4 conditional mutants, we disrupted canonical TGF-β/BMP signaling in maturing basal VSNs and in all mature VSNs. We show that Smad4 loss-of-function in immature basal neurons leads to a progressive loss of basal VSNs, reduced activation of the remnant basal VSNs, and aberrant glomeruli formation in posterior AOB. However, Smad4 ablation in all mature VSNs does not affect neuronal activity nor survival but causes aberrant glomeruli formation only in the posterior AOB. Our study reveals that Smad4 signaling plays a critical role in mediating development, function, and circuit formation of basal VSNs.


2019 ◽  
Author(s):  
Xingjian Zhang ◽  
Julian P. Meeks

AbstractThe accessory olfactory bulb (AOB) is a critical circuit in the mouse accessory olfactory system (AOS), but AOB processing is poorly understood compared to the main olfactory bulb (MOB). We used 2-photon GCaMP6f Ca2+ imaging in an ex vivo preparation to study the chemosensory tuning of AOB external granule cells (EGCs), an interneuron population hypothesized to broadly integrate from mitral cells (MCs). We measured MC and EGC tuning to natural chemosignal blends and monomolecular ligands, finding that EGC tuning was far sparser than MC tuning. Simultaneous patch-clamp electrophysiology and Ca2+ imaging indicated that this was only partially explained by lower GCaMP6f-to-spiking ratios in EGCs compared to MCs. Ex vivo patch-clamp recordings revealed that EGC subthreshold responsivity was broad, but monomolecular ligand responses were insufficient to elicit spiking. These results indicate that EGC spiking is selectively engaged by chemosensory blends, suggesting different roles for EGCs than analogous interneurons in the MOB.


Sign in / Sign up

Export Citation Format

Share Document