Design of sulfur treated activated carbon fibers for gas phase elemental mercury removal

Fuel ◽  
2014 ◽  
Vol 116 ◽  
pp. 560-565 ◽  
Author(s):  
Yaxuan Yao ◽  
Vedagiri Velpari ◽  
James Economy
2006 ◽  
Vol 132 (3) ◽  
pp. 292-300 ◽  
Author(s):  
Wenguo Feng ◽  
Seokjoon Kwon ◽  
Xue Feng ◽  
Eric Borguet ◽  
Radisav D. Vidic

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1190
Author(s):  
Regina Rodriguez ◽  
Domenic Contrino ◽  
David Mazyck

Activated carbon (AC) is widely accepted for the removal of inorganic contaminants like mercury; however, the raw material used in the production of activated carbon is not always taken into consideration when evaluating its efficacy. Mercury oxidation and adsorption mechanisms governed by carbene sites are more likely to occur when graphitic-like activated carbons (such as those produced from high-ranking coals) are employed versus lignocellulosic-based ACs; this is likely due to the differences in carbon structures where lignocellulosic materials are less aromatic. In this research, the team studied bituminous coal-based ACs in comparison to coconut shell and wood-based (both less aromatic) ACs for elemental mercury removal. Nitric acid of 0.5 M, 1 M, and 5 M concentrations along with 10 M hydrogen peroxide were used to oxidize the surface of the ACs. Boehm titrations and FTIR analysis were used to quantify the addition of functional groups on the activated carbons. A trend was observed herein, resulting in increasing nitric acid molarity and an increased quantity of oxygen-containing functional groups. Gas-phase mercury removal mechanisms including physisorption, oxygen functional groups, and carbene sites were evaluated. The results showed significantly better elemental mercury removal in the gas phase with a bituminous coal-based AC embodying similar physical and chemical characteristics to that of its coconut shell-based counterpart. The ACs treated with various oxidizing agents to populate oxygen functional groups on the surface showed increased mercury removal. It is hypothesized that nitric acid treatment creates oxygen functional groups and carbene sites, with carbene sites being more responsible for mercury removal. Heat treatments post-oxidation with nitric acid showed remarkable results in mercury removal. This process created free carbene sites on the surface and shows that carbene sites are more reactive to mercury adsorption than oxygen. Overall, physisorption and oxygen functional groups were also dismissed as mercury removal mechanisms, leaving carbene-free sites as the most compelling mechanism.


1999 ◽  
Vol 11 (12) ◽  
pp. 3476-3483 ◽  
Author(s):  
Christian L. Mangun ◽  
Kelly R. Benak ◽  
Michael A. Daley ◽  
James Economy

1998 ◽  
Vol 5 (3-4) ◽  
pp. 261-266 ◽  
Author(s):  
M. Endo ◽  
T. Furuta ◽  
F. Minoura ◽  
C. Kim ◽  
K. Oshida ◽  
...  

2012 ◽  
Vol 46 (14) ◽  
pp. 7905-7912 ◽  
Author(s):  
Eric A. Morris ◽  
Donald W. Kirk ◽  
Charles Q. Jia ◽  
Kazuki Morita

2012 ◽  
Vol 184-185 ◽  
pp. 1110-1113 ◽  
Author(s):  
Li Fen He ◽  
Qi Xia Liu ◽  
Tao Ji ◽  
Qiang Gao

Various jute-based activated carbon fibers were prepared by using jute fibers as raw materials and phosphoric acid as activating agent. The effects of three main factors such as concentration of activating agent, activation temperature and activation time on the yield and adsorptive properties of active carbon fibers were investigated via orthogonal experiments. The surface physical morphology of jute-based activated carbon fiber was also observed by using Scanning Electron Microscope. Results showed that the optimum conditions were phosphoric acid concentration of 4 mol/L, activation temperature of 600 °C and activation time of 1h. The yield, iodine number and amount of methylene blue adsorption of the active carbon fiber prepared under optimum conditions were 37.99 %, 1208.87 mg/g and 374.65 mg/g, respectively.


Sign in / Sign up

Export Citation Format

Share Document