Second-order gas slippage model for the Klinkenberg effect of multicomponent gas at finite Knudsen numbers up to 1

Fuel ◽  
2019 ◽  
Vol 235 ◽  
pp. 1275-1286 ◽  
Author(s):  
Shihao Wang ◽  
Alexander A. Lukyanov ◽  
Yu-Shu Wu
2017 ◽  
Vol 29 (1) ◽  
pp. 012004 ◽  
Author(s):  
Shihao Wang ◽  
Alexander A. Lukyanov ◽  
Lei Wang ◽  
Yu-Shu Wu ◽  
Andrew Pomerantz ◽  
...  
Keyword(s):  

Author(s):  
Yufei Chen ◽  
Changbao Jiang ◽  
Juliana Y. Leung ◽  
Andrew K. Wojtanowicz ◽  
Dongming Zhang ◽  
...  

Abstract Shale is an extremely tight and fine-grained sedimentary rock with nanometer-scale pore sizes. The nanopore structure within a shale system contributes not only to the low to ultra-low permeability coefficients (10−18 to 10−22 m2), but also to the significant gas slippage effect. The Klinkenberg equation, a first-order correlation, offers a satisfying solution to describe this particular phenomenon for decades. However, in recent years, several scholars and engineers have found that the linear relation from the Klinkenberg equation is invalid for most gas shale reservoirs, and a need for a second-order model is, therefore, proceeding apace. In this regard, the purpose of this study was to develop a second-order approach with experimental verifications. The study involved a derivation of a second-order correlation of the Klinkenberg-corrected permeability, followed by experimental verifications on a cubic shale sample sourced from the Sichuan Basin in southwestern China. We utilized a newly developed multi-functional true triaxial geophysical (TTG) apparatus to carry out permeability measurements with the steady-state method in the presence of heterogeneous stresses. Also discussed were the effects of two gas slippage factors, Klinkenberg-corrected permeability, and heterogeneous stress. Finally, based on the second-order slip theory, we analyzed the deviation of permeability from Darcy flux. The results showed that the apparent permeability increased more rapidly as the pore pressure declined when the pore pressures are relatively low, which is a strong evidence of the gas slippage effect. The second-order model could reasonably match the experimental data, resulting in a lower Klinkenberg-corrected permeability compared with that from the linear Klinkenberg equation. That is, the second-order approach improves the intrinsic permeability estimation of gas shales with the result being closer to the liquid permeability compared with the Klinkenberg approach. Analysis of the experimental data reported that both the first-order slippage factor A and the second-order slippage factor B increased with increasing stress heterogeneity, and that A was likely to be more sensitive to stress heterogeneity compared with B. Interestingly, both A and B first slightly increased and then significantly as the permeability declined. It is recommended that when the shale permeability is below 10−18 m2, the second-order approach should be taken into account. Darcy’s law starts to deviate when Kn > 0.01 and is invalid at high Knudsen numbers. The second-order approach seems to alleviate the problem of overestimation compared with the Klinkenberg approach and is more accurate in permeability evolution.


Author(s):  
W. L. Bell

Disappearance voltages for second order reflections can be determined experimentally in a variety of ways. The more subjective methods, such as Kikuchi line disappearance and bend contour imaging, involve comparing a series of diffraction patterns or micrographs taken at intervals throughout the disappearance range and selecting that voltage which gives the strongest disappearance effect. The estimated accuracies of these methods are both to within 10 kV, or about 2-4%, of the true disappearance voltage, which is quite sufficient for using these voltages in further calculations. However, it is the necessity of determining this information by comparisons of exposed plates rather than while operating the microscope that detracts from the immediate usefulness of these methods if there is reason to perform experiments at an unknown disappearance voltage.The convergent beam technique for determining the disappearance voltage has been found to be a highly objective method when it is applicable, i.e. when reasonable crystal perfection exists and an area of uniform thickness can be found. The criterion for determining this voltage is that the central maximum disappear from the rocking curve for the second order spot.


Sign in / Sign up

Export Citation Format

Share Document