Polyoxymethylene dimethyl ethers as clean diesel additives: Fuel freezing and prediction

Fuel ◽  
2019 ◽  
Vol 237 ◽  
pp. 833-839 ◽  
Author(s):  
Dan Wang ◽  
Gangli Zhu ◽  
Zhen Li ◽  
Chungu Xia
1998 ◽  
Author(s):  
PAUL SCHERRER INST VILLIGEN (SWITZERLAND)
Keyword(s):  

Author(s):  
Daniel Felipe Rodriguez-Vallejo ◽  
Antonio Valente ◽  
Gonzalo Guillén-Gosálbez ◽  
Benoit Chachuat

Reducing the contribution of the transport sector to climate change calls for a transition towards renewable fuels. Polyoxymethylene dimethyl ethers (OMEn) constitute a promising alternative to fossil-based diesel. This article...


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4608
Author(s):  
Jingjing He ◽  
Hao Chen ◽  
Xin Su ◽  
Bin Xie ◽  
Quanwei Li

Polyoxymethylene dimethyl ethers (PODE) are a newly appeared promising oxygenated alternative that can greatly reduce soot emissions of diesel engines. The combustion characteristics of the PODE and diesel blends (the blending ratios of PODE are 0%, 20%, 50% and 100% by volume, respectively) are investigated based on an optical engine under the injection timings of 6, 9, 12 and 15-degree crank angles before top dead center and injection pressures of 100 MPa, 120 MPa and 140 MPa in this study. The results show that both the ignition delay and combustion duration of the fuels decrease with the increasing of PODE ratio in the blends. However, in the case of the fuel supply of the optical engine being fixed, the heat release rate, cylinder pressure and temperature of the blend fuels decrease with the PODE addition due to the low lower heating value of PODE. The addition of PODE in diesel can significantly reduce the integrated natural flame luminosity and the soot formation under all injection conditions. When the proportion of the PODE addition is 50% and 100%, the chemical properties of the blends play a leading role in soot formation, while the change of the injection conditions have an inconspicuous effect on it. When the proportion of the PODE addition is 20%, the blend shows excellent characteristics in a comprehensive evaluation of combustion and soot reduction.


2005 ◽  
Author(s):  
Ali Mohammadi ◽  
Takuji Ishiyama ◽  
Takaaki Kakuta ◽  
Sung-Sub Kee

2011 ◽  
Vol 8 (2) ◽  
pp. 229-238 ◽  
Author(s):  
Haiyan Liu ◽  
Jianning Yu ◽  
Yu Fan ◽  
Gang Shi ◽  
Xiaojun Bao

2016 ◽  
Vol 6 (4) ◽  
pp. 993-997 ◽  
Author(s):  
Ruiyi Wang ◽  
Zhiwei Wu ◽  
Zhangfeng Qin ◽  
Chengmeng Chen ◽  
Huaqing Zhu ◽  
...  

Graphene oxide as an acid carbocatalyst performs excellently in the synthesis of polyoxymethylene dimethyl ethers from methanol and trioxymethylene.


Sign in / Sign up

Export Citation Format

Share Document