Corrigendum to “Bismuth silicate (Bi4Si3O12 and Bi2SiO5) prepared by ultrasonic-assisted hydrothermal method as novel catalysts for biodiesel production via oleic acid esterification with methanol” [Fuel 256 (2019) 115979]

Fuel ◽  
2019 ◽  
Vol 258 ◽  
pp. 116203
Author(s):  
Hala R. Mahmoud
2018 ◽  
Vol 156 ◽  
pp. 03002
Author(s):  
Iwan Ridwan ◽  
Mukhtar Ghazali ◽  
Adi Kusmayadi ◽  
Resza Diwansyah Putra ◽  
Nina Marlina ◽  
...  

The oleic acid solubility in methanol is low due to two phase separation, and this causes a slow reaction time in biodiesel production. Tetrahydrofuran as co-solvent can decrease the interfacial surface tension between methanol and oleic acid. The objective of this study was to investigate the effect of co-solvent, methanol to oleic acid molar ratio, catalyst amount, and temperature of the reaction to the free fatty acid conversion. Oleic acid esterification was conducted by mixing oleic acid, methanol, tetrahydrofuran and Amberlyst 15 as a solid acid catalyst in a batch reactor. The Amberlyst 15 used had an exchange capacity of 2.57 meq/g. Significant free fatty acid conversion increments occur on biodiesel production using co-solvent compared without co-solvent. The highest free fatty acid conversion was obtained over methanol to the oleic acid molar ratio of 25:1, catalyst use of 10%, the co-solvent concentration of 8%, and a reaction temperature of 60°C. The highest FFA conversion was found at 28.6 %, and the steady state was reached after 60 minutes. In addition, the use of Amberlyst 15 oleic acid esterification shows an excellent performance as a solid acid catalyst. Catalytic activity was maintained after 4 times repeated use and reduced slightly in the fifth use.


2021 ◽  
Vol 11 (3) ◽  
pp. 1-18
Author(s):  
Dr. Ban A. Al-Tabbakh ◽  
Sattar J. Hussein ◽  
Zena A. Hadi

Biodiesel was produced using oleic acid esterification and transesterification of the sunflower oil methods. Many different factors affecting production procedures were studied such as reaction temperature, the molar ratio of ethanol to oil, reaction time and concentration of HY catalyst. Different techniques such as TGA, FTIR and Mass spectroscopy were used to syntheses biodiesel. Results showed that 78% of oleic acid maximum conversion was obtained at a temperature of 70oC with molar ratio 12:1 ethanol: oil with 5 wt.% catalysts at 90 min reaction time, while for sunflower oil conversion of 98% at 200oC with 5 weight ratio of ethanol: oil at a time of 3 h was successfully obtained.


2014 ◽  
Vol 32 (2) ◽  
pp. 255-265 ◽  
Author(s):  
Omar Montenegro R. ◽  
Stanislav Magnitskiy ◽  
Martha C. Henao T.

This study was conducted to assess fruit and seed yield, oil content and oil composition of Jatropha curcas fertilized with different doses of nitrogen and potassium in Espinal (Tolima, Colombia). The yields ranged from 4,570 to 8,800 kg ha-1 of fruits and from 2,430 to 4,746 kg ha-1 of seeds. These yields showed that the fertilizer dose of 150 kg ha-1 N + 120 kg ha-1K increased fruit production by 92% and seed production by 95%, which represents an increase of about 100% in oil production, which increased from 947 to 1,900 kg ha-1. The total oil content in the seeds ranged from 38.7 to 40.1% (w/w) with a high content of the unsaturated fatty acids oleic (> 47%) and linoleic acid (> 29%). The highest content of oleic acid in the seed oil was from the unfertilized control plants and plants with an application of 100 kg ha-1 of N and 60 kg ha-1 of K, with an average of 48%. The lowest content of oleic acid was registered when a low dose of nitrogen and a high level of potassium were applied at a ratio of 1:2.4 and doses of 50 kg ha-1 N + 120 kg ha-1 K, respectively. Low contents of the saturated fatty acids palmitic (13.4%) and stearic (7.26%) were obtained, making this oil suitable for biodiesel production. The nitrogen was a more important nutrient for the production and quality of oil in J. curcas than potassium under the studied conditions of soil and climate.


Teknomekanik ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 14-21
Author(s):  
Sri Rizki Putri Primandari ◽  
Andril Arafat ◽  
Harumi Veny

Waste cooking oil has high Free Fatty Acid (FFA). It affected on decreasing a biodiesel production. FFA reduction is one of important processes in biodiesel production from waste cooking oil. Thus, this study aimed to examine the optimum condition in FFA reduction. The process is assisted by using ultrasonic irradiation on acid esterification. Variables of the process are acid concentration, molar ratio of methanol and oil, and irradiation time. Meanwhile temperature irradiation on 45oC is a control variable. Process optimization is conducted by Response Surface Methodology (RSM) with Central Composite Design (CCD). The optimum conditions of response were 7.22:1 (methanol to oil molar ratio), 0.92% wt H2SO4, 26.04 minutes (irradiation time), and 45oC (irradiation temperature). Ultrasonic system reduced FFA significantly compared to conventional method.


2018 ◽  
Vol 15 (30) ◽  
pp. 447-462
Author(s):  
M. C. de M. SOUZA ◽  
L. DI SOUZA ◽  
V. P. da S. Caldeira ◽  
A. G. D. SANTOS ◽  
B. ADILSON

With the increasing selective energy demand, fossil fuels are becoming scarce and environmentally incorrect, a viable alternative to this problem being the production of biodiesel. However, the esterification and transesterification reactions used are slow, expensive and ecologically incorrect because they produce polluting waste. Thus, it is necessary to develop techniques, reagents and equipment that make them fast, cheap and environmentally friendly. This work evaluated the performance of the thermal heating, microwave and ultrasonic methods in the esterification efficiency of oleic and stearic fatty acids via homogeneous acid catalysis. The efficiency of the reaction was certificated with the variables: time, yield and conversion and the biodiesel characterization were done with TG / DTG, FTIR and NMR. Conversions were determined by TG and 1H NMR and the yield by gravimetry. The results showed conversion with all methods with differences in the analyzed variables. The yields decrease in the microwave order (52%) conduction (33%) ultrasound (30%) for reactions with oleic acid and are practically the same (22, 22 and 20), independently of the stearic acid. Among the methods used, the most efficient is the microwave, because it has a higher yield in the case of oleic acid and reducing the reaction time.


Sign in / Sign up

Export Citation Format

Share Document