scholarly journals Nanoparticle modified polyacrylamide for enhanced oil recovery at harsh conditions

Fuel ◽  
2020 ◽  
Vol 268 ◽  
pp. 117186 ◽  
Author(s):  
Maje Alhaji Haruna ◽  
Jabbar Gardy ◽  
Guice Yao ◽  
Zhongliang Hu ◽  
Nicole Hondow ◽  
...  
SPE Journal ◽  
2014 ◽  
Vol 19 (06) ◽  
pp. 1024-1034 ◽  
Author(s):  
Jun Lu ◽  
Christopher Britton ◽  
Sriram Solairaj ◽  
Pathma J. Liyanage ◽  
Do Hoon Kim ◽  
...  

Summary A new class of surfactants has been developed and tested for chemical enhanced oil recovery (EOR) that shows excellent performance under harsh reservoir conditions. These novel Guerbet alkoxy carboxylate (GAC) surfactants fulfill this need by providing large, branched hydrophobes; flexibility in the number of alkoxylate groups; and stability in both alkaline and nonalkaline environments at temperatures up to at least 120°C. The new carboxylate surfactants were recently manufactured at a cost comparable to other commercial EOR surfactants by use of commercially available feedstocks. A formulation containing the combination of a carboxylate surfactant and a sulfonate cosurfactant resulted in a synergistic interaction that has the potential to reduce the total chemical cost further. One can obtain both ultralow interfacial tension (IFT) with the oils and a clear aqueous solution (even under harsh conditions such as high salinity, high hardness, and high temperature with or without alkali) with these new large-hydrophobe alkoxy carboxylate surfactants. Both sandstone and carbonate corefloods were conducted, with excellent results. Formulations were developed for both active oils (contains naturally occurring carboxylic acids) and inactive oils (oils that do not produce sufficient amounts of soap/carboxylic acid), with excellent results.


Author(s):  
A. A. Kazakov ◽  
V. V. Chelepov ◽  
R. G. Ramazanov

The features of evaluation of the effectiveness of flow deflection technologies of enhanced oil recovery methods. It is shown that the effect of zeroing component intensification of fluid withdrawal leads to an overestimation of the effect of flow deflection technology (PRP). Used in oil companies practice PRP efficiency calculation, which consists in calculating the effect on each production well responsive to subsequent summation effects, leads to the selective taking into account only the positive components of PRP effect. Negative constituents — not taken into account and it brings overestimate over to overstating of efficiency. On actual examples the groundless overstating and understating of efficiency is shown overestimate at calculations on applied in petroleum companies by a calculation.


Author(s):  
Jianlong Xiu ◽  
Tianyuan Wang ◽  
Ying Guo ◽  
Qingfeng Cui ◽  
Lixin Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document