Comparison of scattering phase functions of reacting and non-reacting pulverised fuel particles

Fuel ◽  
2021 ◽  
Vol 287 ◽  
pp. 119415
Author(s):  
M. Koch ◽  
L. Pörtner ◽  
Y. Gu ◽  
M. Schiemann ◽  
W. Rohlfs ◽  
...  
1985 ◽  
Vol 85 ◽  
pp. 215-218
Author(s):  
S.S. Hong

AbstractA linear combination of 3 Henyey-Greenstein phase functions is substituted for the mean volume scattering phase function in the zodiacal light brightness integral. Results of the integral are then compared with the observed brightness to form residuals. Minimization of the residuals provides us with the best combination of Henyey-Greenstein functions for the scattering phase function of zodiacal dust particles.


2007 ◽  
Vol 7 (22) ◽  
pp. 5803-5813 ◽  
Author(s):  
A. R. D. Smedley ◽  
A. R. Webb ◽  
C. P. R. Saunders

Abstract. In the last few years diode array spectroradiometers have become useful complements to traditional scanning instruments when measuring visible and ultraviolet solar radiation incident on the ground. This study describes the application of such an instrument to the problem of measuring the radiation scattered by different cloud-types in a laboratory environment. Details of how the instrument is incorporated into the experimental set-up are given together with the development of the system as a whole. The capability to measure a full spectrum for each scattering angle is an undoubted advantage, although the limited sensitivity impacts on the usefulness for optically thin clouds. Nevertheless example results are presented: (1) scattering phase functions at a range of wavelengths recorded simultaneously for water clouds, showing spectral deviation at the rainbow angle and verification of Mie theory; (2) likewise for mixed phase clouds, with evidence of both halo and rainbow features in a single scattering function; and, (3) detail of the forward scattering region in a glaciated cloud showing a barely perceptible halo feature, with implications for the small-scale structure of the ice crystals produced.


1996 ◽  
Vol 14 (11) ◽  
pp. 1192-1197 ◽  
Author(s):  
C. Liu ◽  
P. R. Jonas ◽  
C. P. R. Saunders

Abstract. Phase functions have been calculated using the Monte Carlo/geometric ray tracing method for single hexagonal pyramidal ice crystals (such as solid and hollow bullets) randomly oriented in space and horizontal plane, in order to study the concentric halo formations. Results from three dimensional model calculations show that 9° halo can be as bright as the common 22° halo for pyramidal angle of 28°, and the 18°, 20°, 24° and 35° halos cannot be seen due to the strong 22° halo domination in the scattering phase function between 18° and 35°. For solid pyramidal ice crystals randomly oriented horizontally, the 35° arc can be produced and its intensity depends on the incident ray solar angle and the particle aspect ratio.


2006 ◽  
Vol 23 (5) ◽  
pp. 802-808 ◽  
Author(s):  
Jian-Qi Zhao ◽  
Guangyu Shi ◽  
Huizheng Che ◽  
Guangguang Cheng

2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Valery V. Cherepanov ◽  
Oleg M. Alifanov

This work gives a brief description of the statistical model that takes into account when calculating the physical, in particular, the optical properties of some ultraporous nonmetallic high-temperature materials, the real regularities of the material structure, and the physical properties of substances constituting the material. For the spectral part of the model, some tests are presented, confirming its adequacy. The simulation of the spectra and the scattering of monochromatic radiation pattern by using the representative elements of the model and the material as a whole are carried out. It is found that despite the fact that the scattering pattern based on the use of representative elements of a material can be approximated by the classical distributions, this is not true for the material as a whole. Calculations of the angular scattering probability density of the materials are carried out, and the approximations of obtained distributions that extend the class of modeling scattering phase functions (SPF) are proposed.


Sign in / Sign up

Export Citation Format

Share Document