Development of the chemical kinetic mechanism and modeling study on the ignition delay of liquefied natural gas (LNG) at intermediate to high temperatures and high pressures

Fuel ◽  
2021 ◽  
Vol 302 ◽  
pp. 121137
Author(s):  
Solmaz Nadiri ◽  
Sumit Agarwal ◽  
Xiaoyu He ◽  
Ulf Kühne ◽  
Ravi Fernandes ◽  
...  
Author(s):  
Seung Eon Jang ◽  
Jin Park ◽  
Sang Hyeon Han ◽  
Hong Jip Kim ◽  
Ki Sung Jung ◽  
...  

Abstract In this study, the auto ignition with low limit temperature of syngas has been numerically investigated using a 2-D numerical analysis. Previous study showed that auto ignition was observed at above 860 K in co-flow jet experiments using syngas and dry air. However, the auto ignition at this low temperature range could not be predicted with existing chemical mechanisms. Inconsistency of the auto ignition temperature between the experimental and numerical results is thought to be due to the inaccuracy of the chemical kinetic mechanism. The prediction of ignition delay time and sensitivity analysis for each chemical kinetic mechanism were performed to verify the reasons of the inconsistency between the experimental and numerical results. The results which were calculated using the various mechanisms showed significantly differences in the ignition delay time. In this study, we intend to analyze the reason of discrepancy to predict the auto ignition with low pressure and low temperature region of syngas and to improve the chemical kinetic mechanism. A sensitive analysis has been done to investigate the reaction steps which affected the ignition delay time significantly, and the reaction rate of the selected reaction step was modified. Through the modified chemical kinetic mechanism, we could identify the auto ignition in the low temperature region from the 2-D numerical results. Then CEMA (Chemical Explosive Mode Analysis) was used to validate the 2-D numerical analysis with modified chemical kinetic mechanism. From the validation, the calculated λexp, EI, and PI showed reasonable results, so we expect that the modified chemical kinetic mechanism can be used in various low temperature region.


Author(s):  
Shaoping Shi ◽  
Daniel Lee ◽  
Sandra McSurdy ◽  
Michael McMillian ◽  
Steven Richardson ◽  
...  

In any theoretical investigation of ignition processes in natural gas reciprocating engines, physical and chemical mechanisms must be adequately modeled and validated in an independent manner. The Rapid Compression Machine (RCM) has been used in the past as a tool to validate both autoignition models as well as turbulent mixing effects. In this study, two experimental cases were examined. In the first experimental case, the experimental measurements of Lee and Hochgreb (1998a) were chosen to validate the simulation results. In their experiments, hydrogen/oxygen/argon mixtures were used as reactants. In the simulations, a reduced chemical kinetic mechanism consisting of 10 species and 19 elementary reactions coupled to a CFD software, Fluent 6, was used to simulate the autoignition. The ignition delay from the simulation agreed very well with that from the experimental data of Lee and Hochgreb, (1998b). In the second case, experimental data derived from an RCM with two opposed, pneumatically driven pistons (Brett et al., 2001) were used to study the autoignition of methane/oxygen/argon mixtures. The reduced chemical kinetic mechanism DRM22, derived from the GRI-Mech reaction scheme coupled to Fluent 6, was applied in the simulations. The DRM22 scheme included 22 species and 104 reactions. When methane/oxygen/argon mixture were simulated for the RCM, the ignition delay deviated about 15% from the experimental results. The simulation approaches as well as the validation results are discussed in detail in this paper. The paper also discusses an evaluation of reduced reaction models available in the literature for subsequent Fluent modeling.


2007 ◽  
Vol 8 (4) ◽  
pp. 337-346 ◽  
Author(s):  
Y Kim ◽  
J Lim ◽  
K Min

The characteristics of the spray behaviour and ignition delay of dimethyl ether (DME) were investigated in both experiment and simulation. DME spray images were taken in a constant-volume vessel by using Mie scattering and shadowgraph methods to measure the spray tip penetration and the spray angle of the liquid and vapour phase. The images were acquired at low- and high-temperature conditions and it was found that the spray development was dependent on the ambient density. The ignition delay of DME spray was also measured under high pressure and temperature conditions and compared with that of diesel spray in the same conditions. To predict the ignition and combustion characteristics of DME, a reduced chemical kinetic mechanism consisting of 28 species and 45 reactions was derived from a detailed mechanism. Calculated results in homogeneous conditions agreed well with the measured data from shock tube experiments. Then three-dimensional simulation of spray development and ignition delay of DME spray was performed using a flamelet model associated with a computational fluid dynamics (CFD) code and the reduced chemical kinetic mechanism. The results showed good agreement with the above experimental results.


2021 ◽  
Author(s):  
Mark Edward Fuller ◽  
Philipp Morsch ◽  
Franklin Goldsmith ◽  
Karl Alexander Heufer

This article details new ignition delay time experiments carried out on blends of n-pentane and either NO or NO<sub>2</sub> in the rapid compression machine facility at RWTH Aachen University. Further, a new chemical kinetic mechanism is developed which is able to well-reproduce the experiments and significantly improve over recently published mechanisms. <br>This work has particular value for publication as it adopts a systematic, class-based approach to mechanism development for interactions with nitrogenated species. <br>


2021 ◽  
Author(s):  
Mark Edward Fuller ◽  
Philipp Morsch ◽  
Franklin Goldsmith ◽  
Karl Alexander Heufer

This article details new ignition delay time experiments carried out on blends of n-pentane and either NO or NO<sub>2</sub> in the rapid compression machine facility at RWTH Aachen University. Further, a new chemical kinetic mechanism is developed which is able to well-reproduce the experiments and significantly improve over recently published mechanisms. <br>This work has particular value for publication as it adopts a systematic, class-based approach to mechanism development for interactions with nitrogenated species. <br>


2016 ◽  
Author(s):  
Guangying Yu ◽  
Omid Askari ◽  
Fatemeh Hadi ◽  
Ziyu Wang ◽  
Hameed Metghalchi ◽  
...  

Gas to Liquid (GTL), an alternative synthetic jet fuel derived from natural gas has gained significant attention recently due to its cleaner combustion characteristics when compared to conventional counterparts. The effect of chemical composition on key performance aspects such as ignition delay time, laminar burning speed, and emission characteristics have been experimentally studied. However, the development of chemical kinetics mechanism to predict those parameters for GTL fuel is still in its early stage. In this work, a detailed kinetics model (DKM) has been developed based on the chemical kinetics reported for GTL surrogate fuels. The DKM is applied to the chemical kinetic mechanism of 597 species and 3853 reactions. The DKM is employed in a constant internal energy and constant volume reactor to predict the ignition delay times for GTL and its three surrogates over a wide range of initial temperature, pressure and equivalence ratio. The ignition delay times predicted using DKM are validated with those reported in the literature. Furthermore, the CANTERA freely propagating 1D flame code is used in conjunction with the chemical kinetic mechanism to predict the laminar burning speeds for GTL fuel over a wide range of operating conditions.


Sign in / Sign up

Export Citation Format

Share Document