Enhancing pyrolysis gas and bio-oil formation through transition metals as in situ catalysts

Fuel ◽  
2022 ◽  
Vol 308 ◽  
pp. 121900
Author(s):  
Andrew H. Hubble ◽  
Emily M. Ryan ◽  
Jillian L. Goldfarb
2021 ◽  
Vol 657 (1) ◽  
pp. 012023
Author(s):  
Zengtong Deng ◽  
Yi Wang ◽  
Song Hu ◽  
Sheng Su ◽  
Long Jiang ◽  
...  
Keyword(s):  

2019 ◽  
Vol 37 (3) ◽  
pp. 3119-3126 ◽  
Author(s):  
Linlin Yi ◽  
Huan Liu ◽  
Kangxin Xiao ◽  
Geyi Wang ◽  
Qiang Zhang ◽  
...  
Keyword(s):  
Bio Oil ◽  

2021 ◽  
Vol 341 ◽  
pp. 125874
Author(s):  
Nichaboon Chaihad ◽  
Aisikaer Anniwaer ◽  
Aghietyas Choirun Az Zahra ◽  
Yutaka Kasai ◽  
Prasert Reubroycharoen ◽  
...  

2012 ◽  
Vol 26 (5) ◽  
pp. 2962-2967 ◽  
Author(s):  
Chih-Chiang Chang ◽  
Seng-Rung Wu ◽  
Chi-Cheng Lin ◽  
Hou-Peng Wan ◽  
Hom-Ti Lee

2021 ◽  
Author(s):  
Lianlian Xu ◽  
Zhongwen Xu ◽  
Feng Zhang ◽  
Yinmei Yuan ◽  
Bin Cheng ◽  
...  

Abstract This paper studied the synergistic effects of CaO or Al2O3 and three potassium phosphates (e.g., KH2PO4, K2HPO4·3H2O and K3PO4·3H2O) in the rice stalk pyrolysis through pyrolysis-gas chromatography-mass spectrometer (Py-GC/MS) experiments. The results show that after co-catalyzed by CaO/Al2O3 and potassium phosphates, the total contents of phenols, aldehydes, acids, LG from most samples decrease and those of ketones increase compared with those catalyzed by potassium phosphates alone. CaO/Al2O3 and potassium phosphates show synergistic effects in the regulation of the types or contents of phenols, ketones, aldehydes, etc. and are suitable for the production of ketone-rich bio-oil. Dehydration reactions, etc. are further promoted under the co-catalysis of the two catalysts, and some phenols can be converted to benzene products, etc. The contents of acetic acid can decrease to 0. For 50% K3PO4.3H2O impregnated sample, the yields of furans reduce sharply after CaO addition. For most impregnated samples except 50% K2HPO4·3H2O sample and 30%, 50% K3PO4.3H2O, the contents of total furans and furfural increase after Al2O3 addition.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3474 ◽  
Author(s):  
Yichen Liu ◽  
James J. Leahy ◽  
Jacek Grams ◽  
Witold Kwapinski

Fast pyrolysis of Miscanthus, its hydrolysis residue and lignin were carried with a pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) followed by online vapor catalytic upgrading with sulfated ZrO2, sulfated TiO2 and sulfated 60 wt.% ZrO2-TiO2. The most evident influence of the catalyst on the vapor phase composition was observed for aromatic hydrocarbons, light phenols and heavy phenols. A larger amount of light phenols was detected, especially when 60 wt.% ZrO2-TiO2 was present. Thus, a lower average molecular weight and lower viscosity of bio-oil could be obtained with this catalyst. Pyrolysis was also performed at different pressures of hydrogen. The pressure of H2 has a great effect on the overall yield and the composition of biomass vapors. The peak area percentages of both aromatic hydrocarbons and cyclo-alkanes are enhanced with the increasing of H2 pressure. The overall yields are higher with the addition of either H2 or sulfated catalysts. This is beneficial as phenols are valuable chemicals, thus, increasing the value of bio-oil. The results show that the hydrolysis residue has the potential to become a resource for phenol production.


Sign in / Sign up

Export Citation Format

Share Document