In situ evolution of functional groups in char during cellulose pyrolysis under the catalysis of KCl and CaCl2

Fuel ◽  
2022 ◽  
Vol 309 ◽  
pp. 122227
Author(s):  
Erwei Leng ◽  
Yilin Guo ◽  
Yanshan Yin ◽  
Yun Yu ◽  
Xun Gong ◽  
...  
2019 ◽  
Author(s):  
Patrick Fier ◽  
Suhong Kim ◽  
Kevin M. Maloney

Sulfonamides are pervasive in drugs and agrochemicals, yet are typically considered as terminal functional groups rather than synthetic handles. To enable the general late-stage functionalization of secondary sulfonamides, we have developed a mild and general method to reductively cleave the N-S bonds of sulfonamides to generate sulfinates and amines, components which can further react <i>in-situ</i> to access a variety of other medicinally relevant functional groups. The utility of this platform is highlighted by the selective manipulation of several complex bioactive molecules.


Synthesis ◽  
2021 ◽  
Author(s):  
Pragya Pali ◽  
Dhananjay Yadav ◽  
Gaurav Shukla ◽  
Maya Shankar Singh

An efficient and versatile copper-catalyzed unprecedented intermolecular radical [3 + 2] annulation of thioamides with azobisisobutyronitrile (AIBN) is described. This two-component one-pot copper(II)-catalyzed transformation has been achieved via cascade formation of C-S/C−N bonds through the cyclization of in situ generated N,S-acetal intermediate from β-ketothioamide. This operationally simple method allows direct access to synthetically demanding thiazolidin-4-ones in good to excellent yields containing diverse functional groups of different electronic and steric nature. Remarkably, the readily available reaction partners, avoidance of expensive/toxic reagents and the gram scale synthesis are additional attributes to this strategy. AIBN here plays a dual role as radical initiator and unusual source of two carbon coupling partner. Notably, the products possess Z-stereochemistry with regard to the exocyclic C=C double bond at the 2-position of the thiazolidine ring.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Dun Wu ◽  
Wenyong Zhang

Owing to the complexity and heterogeneity of coal during pyrolysis, the ex situ analytical techniques cannot accurately reflect the real coal pyrolysis process. In this study, according to the joint investigation of Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD), the structural evolution characteristics of lignite-subbituminous coal-bituminous coal-anthracite series under heat treatment were discussed in depth. The results of the infrared spectrum of coal show that the different functional groups of coal show different changes with the increase of coal rank before pyrolysis experiment. Based on in situ infrared spectroscopy experiments, it was found that the infrared spectrum curves of the same coal sample have obvious changes at different pyrolysis temperatures. As a whole, when the pyrolysis temperature is between 400 and 500°C, the coal structure can be greatly changed. By fitting the infrared spectrum curve, the infrared spectrum parameters of coal were obtained. With the change of temperature, these parameters show regular changes in coal with different ranks. In the XRD study of coal, the absorption intensity of the diffraction peak (002) of coal increases with increasing coal rank. The XRD patterns of coal have different characteristics at different pyrolysis temperatures. Overall, the area of (002) diffraction peak of the same coal sample increases obviously with the increase of temperature. The XRD structural parameter of coal was obtained by using the curve fitting method. The changing process of two parameters (interlayer spacing (d002) and stacking height (Lc)) can be divided into two main stages, but the average lateral size (La) does not change significantly and remains at the 2.98 ± 0.09 nm. In summary, the above two technologies complement each other in the study of coal structure. The temperature range of both experiments is different, but the XRD parameters of coal with different ranks are reduced within the temperature range of less than 500°C, which reflects that the size of coal-heated aromatic ring lamellae is reduced and the distance between lamellae is also reduced, indicating that the degree of condensation of coal aromatic nuclei may be increased. Correspondingly, the FTIR parameters of coal also reflect that, with increasing temperature, the side chains of coal are constantly cracked, the oxygen-containing functional groups are reduced, and the degree of aromatization of coal may be increased.


e-Polymers ◽  
2003 ◽  
Vol 3 (1) ◽  
Author(s):  
Bernd Bruchmann ◽  
Wolfgang Schrepp

Abstract Synthesizing hyperbranched polyurethanes in a one step process using commercially available raw materials: these were the primary conditions for this work. By taking advantage of intramolecular reactivity differences of isocyanate groups in diisocyanates in combination with reactivity differences of OH and NH groups in alkanolamines, it is possible to generate in situ AB2 molecules by controlling reactions of specific functional groups towards each other. This AA* + B*B2 approach works without protecting groups and opens up a simple and versatile strategy towards hyperbranched aromatic as well as aliphatic polyureaurethanes. Preferential diisocyanates for this synthesis were 2,4-toluylene diisocyanate and isophorone diisocyanate, whereas diethanolamine and diisopropanolamine were used as isocyanate-reactive counterparts.


2003 ◽  
Vol 07 (04) ◽  
pp. 239-248 ◽  
Author(s):  
Daniel T. Gryko ◽  
Mariusz Tasior ◽  
Beata Koszarna

A new method was devised for the synthesis of 1,9-diacyldipyrromethanes - crucial intermediates in the synthesis of meso-substituted corroles and porphyrins with different substituents. The diacylodipyrromethanes formation involves acylation of dipyrromethanes with salts made in situ from POCl 3 and tertiary amides. This modified Vilsmeier approach gives higher yields and no concomitant formation of monoacyldipyrromethanes as compared with the Grignard route. Moreover, compounds possessing groups previously inaccessible ( CN , NO 2 etc.) can be synthesized. During optimization of the transformation of diacyldipyrromethanes into meso-substituted corroles it was found that if macrocyclization reaction mediated by DDQ is performed in the presence of large excess of pyrrole, meso-substituted [22]pentaphyrins(1.1.1.0.0) can be obtained in moderate yield. The currently described procedure constitutes a new method for the synthesis of these valuable porphyrinoids. Corroles possessing interesting, easy to transform, functional groups were obtained in 3-40% yield.


2009 ◽  
Vol 6 (4) ◽  
pp. 305 ◽  
Author(s):  
Erwin J. J. Kalis ◽  
Thomas A. Davis ◽  
Raewyn M. Town ◽  
Herman P. van Leeuwen

Environmental context. Biogels, such as those in cell walls or biofilm matrices, generally comprise negative structural charge which leads to accumulation of positively charged species, e.g. metal ions. The magnitude of the effective charge, and hence the local chemical speciation within the gel phase, is pH dependent. In situ speciation measurements in biogels, such as the model alginate studied in this work, offer a better estimate of bioavailable concentrations than does analysis of the surrounding aqueous medium. Abstract. Many microorganisms exist in a biogel-mediated micro-environment such as a cell wall or a biofilm, in which local concentrations of ionic nutrients and pollutants differ from those in the surrounding bulk medium. The local concentration is the relevant parameter for considerations of bioavailability. These modified concentrations arise as a consequence of the negative charges within biogels which may induce a Donnan potential inside the biogel phase. For metals, the net effect on the speciation within the biogel, relative to the bulk medium, is an enhancement of the concentration of free cations. Since the structural charge in the biogel arises from protolytic functional groups, the Donnan potential is pH dependent. Here we apply in situ voltammetry to measure the free metal ion concentration inside alginate gel as a function of pH. In the pH range 3 to 7, the speciation of CdII within this model biogel can be explained by specific binding to carboxylic functional groups and electrostatic binding resulting from the Donnan potential.


Sign in / Sign up

Export Citation Format

Share Document