DLCA (ch) pretreatment brings economic benefits to both biomass logistics and biomass conversion for low cost cellulosic ethanol production

Fuel ◽  
2021 ◽  
pp. 122603
Author(s):  
Jianming Yu ◽  
Zhaoxian Xu ◽  
Sitong Chen ◽  
Yang Yu ◽  
Chengcheng Zhang ◽  
...  
2011 ◽  
Vol 43 (3) ◽  
pp. 385-398 ◽  
Author(s):  
Francis M. Epplin ◽  
Mohua Haque

First-generation grain ethanol biofuel has affected the historical excess capacity problem in U.S. agriculture. Second-generation cellulosic ethanol biofuel has had difficulty achieving cost-competitiveness. Third-generation drop-in biofuels are under development. If lignocellulosic biomass from perennial grasses becomes the feedstock of choice for second- and third-generation biorefineries, an integrated system could evolve in which a biorefinery directly manages feedstock production, harvest, storage, and delivery. Modeling was conducted to determine the potential economic benefits from an integrated system. Relatively low-cost public policies that could be implemented to facilitate economic efficiency are proposed.


Author(s):  
Carlos Eduardo de Araújo Padilha ◽  
Cleitiane da Costa Nogueira ◽  
Bárbara Ribeiro Alves Alencar ◽  
Íthalo Barbosa Silva de Abreu ◽  
Emmanuel Damilano Dutra ◽  
...  

2012 ◽  
Vol 160 (3-4) ◽  
pp. 229-235 ◽  
Author(s):  
Yu Shen ◽  
Jin-Song Guo ◽  
You-Peng Chen ◽  
Hai-Dong Zhang ◽  
Xu-Xu Zheng ◽  
...  

Author(s):  
T. G. Ambaye ◽  
M. Vaccari ◽  
E. D. van Hullebusch ◽  
A. Amrane ◽  
S. Rtimi

AbstractCurrently, due to the rapid growth of urbanization and industrialization in developing countries, a large volume of wastewater is produced from industries that contain chemicals generating high environmental risks affecting human health and the economy if not treated properly. Consequently, the development of a sustainable low-cost wastewater treatment approach has attracted more attention of policymakers and scientists. The present review highlights the recent applications of biochar in removing organic and inorganic pollutants present in industrial effluents. The recent modes of preparation, physicochemical properties and adsorption mechanisms of biochar in removing organic and inorganic industrial pollutants are also reviewed comprehensively. Biochar showed high adsorption of industrial dyes up to 80%. It also discusses the recent application and mechanism of biochar-supported photocatalytic materials for the degradation of organic contaminants in wastewater. We reviewed also the possible optimizations (such as the pyrolysis temperature, solution pH) allowing the increase of the adsorption capabilities of biochar leading to organic contaminants removal. Besides, increasing the pyrolysis temperature of the biochar was seen to lead to an increase in its surface area, while it decreases their amount of oxygen-containing functional groups, consequently leading to a decrease in the adsorption of metal (loid) ions present in the medium. Finally, the review suggests that more research should be carried out to optimize the main parameters involved in biochar production and its regeneration methods. Future efforts should be also carried out towards process engineering to improve its adsorption capacity to increase the economic benefits of its implementation.


2012 ◽  
Vol 51 (6-7) ◽  
pp. 366-372 ◽  
Author(s):  
Seung-Ho Baek ◽  
Sujin Kim ◽  
Kyusung Lee ◽  
Jung-Kul Lee ◽  
Ji-Sook Hahn

2011 ◽  
Vol 02 (10) ◽  
pp. 1303-1309 ◽  
Author(s):  
Fabiano A. Gonçalves ◽  
Eliana J. Sanjinez-Argandoña ◽  
Gustavo G. Fonseca

PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0134964 ◽  
Author(s):  
Viviane Guzzo de Carli Poelking ◽  
Andrea Giordano ◽  
Maria Esther Ricci-Silva ◽  
Thomas Christopher Rhys Williams ◽  
Diego Alves Peçanha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document