H2 production with CO2 capture by sorption enhanced chemical-looping reforming using NiO as oxygen carrier and CaO as CO2 sorbent

2012 ◽  
Vol 96 ◽  
pp. 27-36 ◽  
Author(s):  
Magnus Rydén ◽  
Pedro Ramos
2021 ◽  
Vol 11 (10) ◽  
pp. 4713
Author(s):  
Carlos Arnaiz del Pozo ◽  
Schalk Cloete ◽  
Ángel Jiménez Álvaro ◽  
Felix Donat ◽  
Shahriar Amini

The hydrogen economy has received resurging interest in recent years, as more countries commit to net-zero CO2 emissions around the mid-century. “Blue” hydrogen from natural gas with CO2 capture and storage (CCS) is one promising sustainable hydrogen supply option. Although conventional CO2 capture imposes a large energy penalty, advanced process concepts using the chemical looping principle can produce blue hydrogen at efficiencies even exceeding the conventional steam methane reforming (SMR) process without CCS. One such configuration is gas switching reforming (GSR), which uses a Ni-based oxygen carrier material to catalyze the SMR reaction and efficiently supply the required process heat by combusting an off-gas fuel with integrated CO2 capture. The present study investigates the potential of advanced La-Fe-based oxygen carrier materials to further increase this advantage using a gas switching partial oxidation (GSPOX) process. These materials can overcome the equilibrium limitations facing conventional catalytic SMR and achieve direct hydrogen production using a water-splitting reaction. Results showed that the GSPOX process can achieve mild efficiency improvements relative to GSR in the range of 0.6–4.1%-points, with the upper bound only achievable by large power and H2 co-production plants employing a highly efficient power cycle. These performance gains and the avoidance of toxicity challenges posed by Ni-based oxygen carriers create a solid case for the further development of these advanced materials. If successful, results from this work indicate that GSPOX blue hydrogen plants can outperform an SMR benchmark with conventional CO2 capture by more than 10%-points, both in terms of efficiency and CO2 avoidance.


2004 ◽  
Vol 126 (2) ◽  
pp. 316-321 ◽  
Author(s):  
O̸. Brandvoll ◽  
O. Bolland

In this paper an alternative to the so-called “oxy-fuel” combustion for CO2 capture is evaluated. “Chemical looping combustion” (CLC), is closely related to oxy-fuel combustion as the chemically bound oxygen reacts in a stoichiometric ratio with the fuel. In the CLC process the overall combustion reaction takes place in two reaction steps in two separate reactors. In the reduction reactor, the fuel is oxidized by the oxygen carrier, i.e., the metal oxide MeO. The metal oxide is reduced to a metal oxide with a lower oxidation number, Me, in the reaction with the fuel. In this manner, pure oxygen is supplied to the reaction with the fuel without using a traditional air separation plant, like cryogenic distillation of air. The paper presents a thermodynamic cycle analysis, where CLC is applied in a humid air turbine concept. Main parameters are identified, and these are varied to examine the influence on cycle efficiency. Results on cycle efficiency are presented and compared to other CO2 capture options. Further, an evaluation of the oxygen carrier, metals/oxides, is presented. An exergy analysis is carried out in order to understand where losses occur, and to explain the difference between CLC and conventional combustion. The oxidation reactor air inlet temperature and the oxidation reactor exhaust temperature have a significant impact on the overall efficiency. This can be attributed to the controlling effect of these parameters on the required airflow rate. An optimum efficiency of 55.9% has been found for a given set of input parameters. Crucial issues of oxygen carrier durability, chemical performance, and mechanical properties have been idealized, and further research on the feasibility of CLC is needed. Whether or not the assumption 100% gas conversion holds, is a crucial issue and remains to be determined experimentally. Successful long-term operation of chemical looping systems of this particular type has not yet been demonstrated. The simulation points out a very promising potential of CLC as a power/heat generating method with inherent capture of CO2. Exergy analysis show reduced irreversibilities for CLC compared to conventional combustion. Simulations of this type will prove useful in designing CLC systems in the future when promizing oxygen carriers have been investigated in more detail .


2018 ◽  
Vol 230 ◽  
pp. 1660-1672 ◽  
Author(s):  
Tien-Lin Hsieh ◽  
Dikai Xu ◽  
Yitao Zhang ◽  
Sourabh Nadgouda ◽  
Dawei Wang ◽  
...  

2015 ◽  
Vol 3 (19) ◽  
pp. 10545-10550 ◽  
Author(s):  
D. Hosseini ◽  
Q. Imtiaz ◽  
P. M. Abdala ◽  
S. Yoon ◽  
A. M. Kierzkowska ◽  
...  

A novel bimetallic Cu–Mn oxygen carrier for Chemical-Looping with Oxygen Uncoupling (CLOU) based CO2 capture.


2021 ◽  
Vol 221 ◽  
pp. 106953
Author(s):  
Qian Zhang ◽  
Bo Jiang ◽  
Lin Li ◽  
Kun Liu ◽  
Nan He ◽  
...  

Author(s):  
Rehan Naqvi ◽  
Olav Bolland ◽  
O̸yvind Brandvoll ◽  
Kaare Helle

In this paper an alternative to so-called ‘oxy-fuel’ combustion has been evaluated. Chemical Looping Combustion (CLC) is an innovative concept of CO2 capture from combustion of fossil fuels in power plants. CLC is closely related to oxy-fuel combustion as the chemically bound oxygen reacts in a stoichiometric ratio with the fuel. In CLC, the overall combustion takes place in two steps. In a reduction reactor fuel is oxidised by the oxygen carrier i.e. the metal oxide MeO which is reduced to metal oxide with a lower oxidation number, Me. Me flows to an oxidation reactor where it is oxidised by oxygen in the air. In this way pure oxygen is supplied to fuel without using an energy intensive traditional air separation unit. This paper presents thermodynamic cycle analysis of a CLC-power plant. A steady-state model has been developed for the solid-gas reactions occurring in the reactor system. The model is applied to analyse the system under two configurations; a combined cycle and a conventional steam cycle. A turbine-cooling model has also been implemented to evaluate the turbine cooling penalty in the combined cycle configuration. Effects of exhaust recirculation for coking prevention and incomplete fuel conversion have also been investigated. Performance of the oxygen carrier has been idealised except for the degrees of reduction and oxidation. Energy needs for CO2 capture have properly been taken into account. The results show that an optimum efficiency of 49.7% can be achieved under given conditions with a CLC-combined cycle at zero emissions level. With turbine cooling, efficiency falls by 1.2% points under the same conditions. The CLC-steam cycle is capable of achieving 40.1% efficiency with zero emissions. The results show that CLC has high potential for power generation with inherent CO2 capture. This work will be useful in designing CLC systems after the reactor system has been analysed experimentally for long-term operations.


Sign in / Sign up

Export Citation Format

Share Document