Interaction between thermal cracking and steam reforming reactions of aviation kerosene

2017 ◽  
Vol 167 ◽  
pp. 655-662 ◽  
Author(s):  
Ling-yun Hou ◽  
Ding-rui Zhang ◽  
Xiao-xiong Zhang
2005 ◽  
Vol 885 ◽  
Author(s):  
Krithi Shetty ◽  
Shihuai Zhao ◽  
Wei Cao ◽  
Naidu V. Seetala ◽  
Debasish Kuila

ABSTRACTThe goal of this research is to investigate the activities of a non-noble nano-catalyst (Ni/SiO2) using Si-microreactors for steam reforming of methanol to produce hydrogen for fuel cells. The supported catalyst was synthesized by sol-gel method using Ni (II) salts and Si(C2H5O)4 as starting materials. EDX results indicate that the actual loading of Ni (5-6%) is lower than the intended loading of 12 %. The specific surface area of the silica sol-gel encapsulated Ni nano-catalyst is 452 m2/g with an average pore size of ∼ 3 nm. Steam reforming reactions have been carried out in a microreactor with 50 µm channels in the temperature range of 180-240 °C and atmospheric pressure. Results show 53% conversion of methanol with a selectivity of 74 % to hydrogen at 5 l/min and 200 °C. The magnetic properties of the catalysts were performed using a Vibrating Sample Magnetometer (VSM) to study the activity of the catalysts before and after the steam reforming reactions. The VSM results indicate much higher activity in the microreactor compared to macro-reactor and Ni forms non-ferromagnetic species faster in the microreactor.


Catalysts ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 800 ◽  
Author(s):  
Andrea Fasolini ◽  
Silvia Ruggieri ◽  
Cristina Femoni ◽  
Francesco Basile

Syngas and Hydrogen productions from methane are industrially carried out at high temperatures (900 °C). Nevertheless, low-temperature steam reforming can be an alternative for small-scale plants. In these conditions, the process can also be coupled with systems that increase the overall efficiency such as hydrogen purification with membranes, microreactors or enhanced reforming with CO2 capture. However, at low temperature, in order to get conversion values close to the equilibrium ones, very active catalysts are needed. For this purpose, the Rh4(CO)12 cluster was synthetized and deposited over Ce0.5Zr0.5O2 and ZrO2 supports, prepared by microemulsion, and tested in low-temperature steam methane reforming reactions under different conditions. The catalysts were active at 750 °C at low Rh loadings (0.05%) and outperformed an analogous Rh-impregnated catalyst. At higher Rh concentrations (0.6%), the Rh cluster deposited on Ce0.5Zr0.5 oxide reached conversions close to the equilibrium values and good stability over long reaction time, demonstrating that active phases derived from Rh carbonyl clusters can be used to catalyze steam reforming reactions. Conversely, the same catalyst suffered from a fast deactivation at 500 °C, likely related to the oxidation of the Rh phase due to the oxygen-mobility properties of Ce. Indeed, at 500 °C the Rh-based ZrO2-supported catalyst was able to provide stable results with higher conversions. The effects of different pretreatments were also investigated: at 500 °C, the catalysts subjected to thermal treatment, both under N2 and H2, proved to be more active than those without the H2 treatment. In general, this work highlights the possibility of using Rh carbonyl-cluster-derived supported catalysts in methane reforming reactions and, at low temperature, it showed deactivation phenomena related to the presence of reducible supports.


Author(s):  
Richard Scenna ◽  
Ashwani K. Gupta

Previous works have demonstrated that the Distributed Reaction regime impact on the reformate product distribution. Using previous works, a theory of how the Distributed Reaction regime influences the reformate product composition is provided. Distributed Reaction regime is achieved by entraining exhaust products into the premixed fuel air mixture. As some steam and carbon dioxide will form in the exhaust, it is theorized that the mixing of the entrained flow (containing heat, carbon dioxide, and steam) into the premixed fuel air mixture will promote dry and steam reforming reactions, improving conversion. As kinetic information on reforming literature is limited, the activity and time scales of these reactions were determined from existing experimental data. This was then used to determine which reactions were active under Distributed Reforming conditions.


2011 ◽  
Vol 35 (15) ◽  
pp. 1340-1350 ◽  
Author(s):  
Martin Andersson ◽  
Hedvig Paradis ◽  
Jinliang Yuan ◽  
Bengt Sundén

Sign in / Sign up

Export Citation Format

Share Document