Simulation model evaluation of desorber column in CO2 capture process by MEA scrubbing: A rigorous rate-based model for kinetic model and mass transfer correlations analysis

2020 ◽  
Vol 203 ◽  
pp. 106390 ◽  
Author(s):  
Mahsa Amirkhosrow ◽  
Ebrahim Nemati Lay
2021 ◽  
Vol 7 (1) ◽  
pp. 25
Author(s):  
Pao-Chi Chen ◽  
Hsun-Huang Cho ◽  
Jyun-Hong Jhuang ◽  
Cheng-Hao Ku

In order to select the best mixed amines in the CO2 capture process, the absorption of CO2 in mixed amines was explored at the required concentrations by using monoethanolamine (MEA) as a basic solvent, mixed with diisopropanolamine (DIPA), triethanolamine (TEA), 2-amino-2-methyl-1-propanol (AMP), and piperazine (PZ). Here, a bubble column was used as the scrubber, and a continuous operation was adopted. The Taguchi method was used for the experimental design. The conditional factors included the type of mixed amine (A), the ratio of the mixed amines (B), the liquid feed flow (C), the gas-flow rate (D), and the concentration of mixed amines (E). There were four levels, respectively, and a total of 16 experiments. The absorption efficiency (EF), absorption rate (RA), overall mass transfer coefficient (KGa), and scrubbing factor (ϕ) were used as indicators and were determined in a steady-state by the mass balance and two-film models. According to the Taguchi analysis, the importance of the parameters and the optimum conditions were obtained. In terms of the absorption efficiency (EF), the absorption rate (absorption factor) (RA/ϕ), and the overall mass transfer coefficient (KGa), the order of importance is D > E > A > B > C, D > E > C > B > A, and D > E > C > A > B, respectively, and the optimum conditions are A1B4C4D3E3, A1B3C4D4E2, A4B2C3D4E4, and A1B1C1D4E1. The optimum condition validation results showed that the optimal values of EF, RA, and KGa are 100%, 30.69 × 10−4 mol/s·L, 1.540 l/s, and 0.269, respectively. With regard to the selection of mixed amine, it was found that the mixed amine (MEA + AMP) performed the best in the CO2 capture process.


2017 ◽  
Vol 114 ◽  
pp. 1558-1566 ◽  
Author(s):  
Stefania Moioli ◽  
Tibor Nagy ◽  
Stefano Langé ◽  
Laura A. Pellegrini ◽  
Peter Mizsey

2019 ◽  
Author(s):  
Wayuta Srisang ◽  
Teerawat Sanpasertparnich ◽  
Brent Jacobs ◽  
Stavroula Giannaris ◽  
Corwyn Bruce ◽  
...  

2014 ◽  
Vol 61 ◽  
pp. 365-368 ◽  
Author(s):  
Chunfeng Song ◽  
Yasuki Kansha ◽  
Masanori Ishizuka ◽  
Qian Fu ◽  
Atsushi Tsutsumi

2016 ◽  
Vol 43 ◽  
pp. 189-197 ◽  
Author(s):  
Alicja Krzemień ◽  
Angelika Więckol-Ryk ◽  
Adam Smoliński ◽  
Aleksandra Koteras ◽  
Lucyna Więcław-Solny
Keyword(s):  

Author(s):  
M. Leuchtenmueller ◽  
C. Legerer ◽  
U. Brandner ◽  
J. Antrekowitsch

AbstractEffective recycling of zinc-containing industrial wastes, most importantly electric arc furnace dust, is of tremendous importance for the circular economy of the steel and zinc industry. Herein, we propose a comprehensive kinetic model of the combined carbothermic and metallothermic reduction of zinc oxide in a metal bath process. Pyro-metallurgical, large-scale lab experiments of a carbon-saturated iron melt as reduction agent for a molten zinc oxide slag were performed to determine reaction constants and accurately predict mass transfer coefficients of the proposed kinetic model. An experimentally determined kinetic model demonstrates that various reactions run simultaneously during the reduction of zinc oxide and iron oxide. For the investigated slag composition, the temperature-dependent contribution of the metallothermic zinc oxide reduction was between 25 and 50 pct of the overall reaction mechanism. The mass transfer coefficient of the zinc oxide reduction quadrupled from 1400 °C to 1500 °C. The zinc recovery rate was > 99.9 pct in all experiments.


2021 ◽  
Author(s):  
Joshua Morgan ◽  
Benjamin Omell ◽  
Michael Matuszewski ◽  
David Miller ◽  
Muhammad Ismail Shah ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document