Mechanical characterization of Li2TiO3 and Li4SiO4 pebble beds: Experimental determination of the material properties and of the pebble bed effective values

2007 ◽  
Vol 82 (15-24) ◽  
pp. 2375-2382 ◽  
Author(s):  
Nicola Zaccari ◽  
Donato Aquaro
2013 ◽  
Vol 543 ◽  
pp. 212-215
Author(s):  
Goran Radosavljević ◽  
Nelu Blaž ◽  
Andrea Marić ◽  
W. Smetana ◽  
Ljiljana Živanov

Presented paper deals with mechanical and electrical properties of several commercially available LTCC (Low Temperature Co-fired Technology) tapes, as well as their thermal characterization. Three commercially available dielectric tape materials provided by Heraeus (CT700, CT707 and CT800) are investigated. The samples for determination of significant material parameters are prepared using the standard LTCC fabrication process. Results of the material characterization (chemical analysis, surface roughness electrical and mechanical properties) are presented. In addition thermo-electrical and-mechanical characterization of investigated tapes analysis is performed.


Author(s):  
Kent D. Butz ◽  
Deva D. Chan ◽  
Corey P. Neu ◽  
Eric A. Nauman

The ability to estimate stresses and material properties within the intervertebral disc (IVD) has potential to provide a greater level of understanding and insight in the study of disc degeneration as well as the development of effective intervention strategies. By integrating non-invasive MRI-based imaging methods with computational modeling, a more complete mechanical characterization of the IVD may be achieved, thereby eliminating the need to disturb the tissue or potentially alter the structure destructively.


Author(s):  
Daniel Kotzem ◽  
Alexandra Höffgen ◽  
Rajevan Raveendran ◽  
Felix Stern ◽  
Kerstin Möhring ◽  
...  

AbstractBy means of additive manufacturing, the production of components with nearly unlimited geometrical design complexity is feasible. Especially, powder bed fusion techniques such as electron beam powder bed fusion (PBF-EB) are currently focused. However, equal material properties are mandatory to be able to transfer this technique to a wide scope of industrial applications. Within the scope of this work, the mechanical properties of the PBF-EB-manufactured Ti6Al4V alloy are investigated as a function of the position on the building platform. It can be stated that as-built surface roughness changes within building platform whereby highest surface roughness detected by computed tomography (Ra = 46.0 ± 5.3 µm) was found for specimens located in the front of the building platform. In contrast, no significant differences in relative density could be determined and specimens can be assumed as nearly fully dense (> 99.9%). Furthermore, all specimens are affected by an undersized effective diameter compared to the CAD data. Fatigue tests revealed that specimens in the front of the building platform show slightly lower performance at higher stress amplitudes as compared to specimens in the back of the building platform. However, process-induced notch-like defects based on the surface roughness were found to be the preferred location for early crack initiation.


Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 295
Author(s):  
Amilcare Porporato ◽  
Salvatore Calabrese ◽  
Tomasz Hueckel

We present new general relationships among the material properties of an isotropic material kept in homogeneous stress conditions with hydrostatic pressure and plane shear. The derivation is not limited to the proximity of the zero shear-stress and -strain condition, which allows us to identify the relationship between adiabatic and isothermal shear compliances (inverse of the moduli of rigidity) along with new links, among others, between isobaric and isochoric shear thermal expansion coefficients and heat capacities at constant stress and constant shear strain. Such relationships are important for a variety of applications, including the determination of constitutive equations, the characterization of nanomaterials, and the identification of properties related to earthquakes precursors and complex media (e.g., soil) behavior. The results may be useful to investigate the behavior of materials during phase transitions involving shear or in non-homogeneous conditions within a local thermodynamic equilibrium framework.


1991 ◽  
Vol 238 ◽  
Author(s):  
Vinayak P. Dravid ◽  
V. Ravikumar ◽  
G. Dhalenne ◽  
A. Revcolevschi

ABSTRACTInterphase interfaces in the directionally solidified eutectics.(DSEs) of NiO-ZrO2(CaO), NiO-Y2O3 and MnO-ZrO2 have been investigated using a variety of TEM techniques. The unique lamellar morphology of the DSEs allows characterization of interfaces and identification of relaxations along multiple directions, aiding visualization of interface structure in three dimensions. Possible low energy interface orientations were identified through examination of facets. The low energy interface planes almost invariably correspond to polar surfaces of adjacent crystals. An attempt has been made to experimentally identify the variety of interfacial relaxation mechanisms using a variety of analytical TEM techniques and only HRTEM results are summarized in this paper. It was found that most of the DSE systems exhibit very little relaxation and possess tight interface cores.


Sign in / Sign up

Export Citation Format

Share Document