Spatial and temporal patterns of grain size and chemical weathering of the Chinese Red Clay Formation and implications for East Asian monsoon evolution

2007 ◽  
Vol 71 (16) ◽  
pp. 3990-4004 ◽  
Author(s):  
Jingtai Han ◽  
Hehai Chen ◽  
William S. Fyfe ◽  
Zhengfu Guo ◽  
Daojing Wang ◽  
...  
2019 ◽  
Vol 23 (3) ◽  
pp. 259-263 ◽  
Author(s):  
Ren Weihe ◽  
Guitian Yi

The Holocene Optimum (HO) defines a relatively warm and wet period during the Holocene, the initial and termination ages of which have been extensively reported for East Asia; however, debates still focus on underlying spatial and temporal patterns. Here, latest paleoclimate records from the East Asian monsoon region and arid central Asia are synthesized to evaluate the spatial and temporal patterns of the HO. The results of this synthesis indicate that the latitude and both the initial and termination ages of the HO follow a strong relationship, which is an expansion and northward retreat of the HO except for records around the Tibetan Plateau and several other highlands. Both the HO and technological development are also suggested to have shaped the historic boom of the Neolithic human demography. This study provides a window toward an improved understanding of the characteristics of time-transgressive HO and allows to make predictions for the initial and termination ages of the HO at different geographical locations of the East Asian monsoon region.


2021 ◽  
Vol 13 (9) ◽  
pp. 4848
Author(s):  
Liwei Wu ◽  
Xinling Li ◽  
Qinghai Xu ◽  
Manyue Li ◽  
Qiufeng Zheng ◽  
...  

The East Asian monsoon system is an important part of global atmospheric circulation; however, records of the East Asian monsoon from different regions exhibit different evolutionary rhythms. Here, we show a high-resolution record of grain size and pollen data from a lacustrine sediment core of Dajiuhu Lake in Shennongjia, Hubei Province, China, in order to reconstruct the paleovegetation and paleoeclimate evolution of the Dajiuhu Basin since the late Middle Pleistocene (~237.9 ka to the present). The results show that grain size and pollen record of the core DJH-2 are consistent with the δ18O record of stalagmites from Sanbao Cave in the same area, which is closely related to the changes of insolation at the precessional (~20-kyr) scale in the Northern Hemisphere. This is different from the records of the Asian summer monsoon recorded in the Loess Plateau of North China, which exhibited dominant 100-kyr change cyclicities. We suggest that the difference between paleoclimatic records from North and South China is closely related to the east–west-oriented mountain ranges of the Qinling Mountains in central China that blocked weakened East Asia summer monsoons across the mountains during glacial periods.


2021 ◽  
Vol 13 (1) ◽  
pp. 505-516
Author(s):  
Xiaohui Wang ◽  
Longsheng Wang ◽  
Shouyun Hu ◽  
Ge Yu ◽  
Qing Wang ◽  
...  

Abstract Paleoenvironmental research is critical for understanding delta evolution processes and managing delta sustainability, particularly for delta experiencing significant recent fluvial sediment discharge. Based on other previously reported optically stimulated luminescence (OSL) data, Holocene environmental changes of the Yangtze River delta in response to climate fluctuations and human activities were reviewed on the basis of grain-size analyses of core YZ07. The results of grain-size and end-member analysis (EMA) provide a detailed history of East Asian monsoon variability and environmental changes since ∼10,000 cal year B.P. The lower median values (Md) and sand content reflect relatively cool and dry climate conditions between 10,000 and 9,570 cal year B.P. During the early Holocene (9,570–7,630 cal year B.P.), the highest Md values and sand contents and the lowest end member 2 (EM2) contents suggest the Holocene transgression. The increased Md values and sand contents indicate that the climate conditions were warm and wet during the mid-Holocene thermal optimum. From 4,690 to 4,150 cal year B.P., the climate was cool and dry, corresponding to the cool event, as indicated by the finer grain size. Subsequently, between 4,150 and 2,850 cal year B.P., the grain size derived from the Md value and sand content increased, which reflect a wet and warm episode. The climate, which shifted from warm and wet to cool and dry between 2,850 and 1,020 cal year B.P., may have caused a reduction in the sand contents and Md values. After 1,020 cal year B.P., the lowest values of Md and Standard deviation (Sd) and the highest contents of EM2 and clay suggest that the Yangtze River delta has been severely affected by anthropogenic activity. The variability of the East Asian monsoon intensity in the Yangtze River delta strongly correlates with other East Asian monsoon paleoclimate records in China. These results are important for investigations into the interactions between regional systems and global change in monsoonal climatic regions and can provide an example of the evolution of a large scale geomorphic feature resulting from river-sea interaction.


Sign in / Sign up

Export Citation Format

Share Document