The oxygen isotope equilibrium fractionation between sulfite species and water

2013 ◽  
Vol 120 ◽  
pp. 562-581 ◽  
Author(s):  
Inigo A. Müller ◽  
Benjamin Brunner ◽  
Christian Breuer ◽  
Max Coleman ◽  
Wolfgang Bach
2014 ◽  
Vol 400 ◽  
pp. 251-260 ◽  
Author(s):  
Tobias Kluge ◽  
Hagit P. Affek ◽  
Yuri Dublyansky ◽  
Christoph Spötl

2012 ◽  
Vol 319-320 ◽  
pp. 159-164 ◽  
Author(s):  
Magdalena E.G. Hofmann ◽  
Balázs Horváth ◽  
Andreas Pack

Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 765
Author(s):  
Yuichi Morishita ◽  
Yoshiro Nishio

The Takatori hypothermal tin–tungsten vein deposit is composed of wolframite-bearing quartz veins with minor cassiterite, chalcopyrite, pyrite, and lithium-bearing muscovite and sericite. Several wolframite rims show replacement textures, which are assumed to form by iron replacement with manganese postdating the wolframite precipitation. Lithium isotope ratios (δ7Li) of Li-bearing muscovite from the Takatori veins range from −3.1‰ to −2.1‰, and such Li-bearing muscovites are proven to occur at the early stage of mineralization. Fine-grained sericite with lower Li content shows relatively higher δ7Li values, and might have precipitated after the main ore forming event. The maximum oxygen isotope equilibrium temperature of quartz–muscovite pairs is 460 °C, and it is inferred that the fluids might be in equilibrium with ilmenite series granitic rocks. Oxygen isotope ratios (δ18O) of the Takatori ore-forming fluid range from +10‰ to +8‰. The δ18O values of the fluid decreased with decreasing temperature probably because the fluid was mixed with surrounding pore water and meteoric water. The formation pressure for the Takatori deposit is calculated to be 160 MPa on the basis of the difference between the pressure-independent oxygen isotope equilibrium temperature and pressure-dependent homogenization fluid inclusions temperature. The ore-formation depth is calculated to be around 6 km. These lines of evidence suggest that a granitic magma beneath the deposit played a crucial role in the Takatori deposit formation.


2008 ◽  
Vol 72 (1) ◽  
pp. 239-242 ◽  
Author(s):  
M. Cusack ◽  
A. Pérez-Huerta ◽  
P. Chung ◽  
D. Parkinson ◽  
Y. Dauphin ◽  
...  

With their long geological history and stable low-Mg calcite shells, Rhynchonelliform brachiopods are attractive sources of environmental data such as past seawater temperature (Buening and Spero, 1996; Auclair et al., 2003; Brand et al., 2003; Parkinson et al., 2005). Concerns about the influence of vital effects on the stable isotope composition of brachiopod shells (Popp et al., 1986), led to isotope analyses of different parts of brachiopod shells in order to identify those parts of the shell that are influenced by any vital effect and those parts that may be suitable recorders of seawater temperature via stable oxygen isotope composition (Carpenter and Lohmann, 1995; Parkinson et al., 2005). Such detailed studies demonstrated that the outer primary layer of acicularcalcite is isotopically light in both δ18O and δ13C while the secondary layer, composed of calcite fibres, is in oxygen-isotope equilibrium with ambient seawater(Fig. 1) (Parkinson et al., 2005).


Author(s):  
Maggie Cusack ◽  
David Parkinson ◽  
Alberto Pérez-Huerta ◽  
Jennifer England ◽  
Gordon B. Curry ◽  
...  

ABSTRACTWith their extensive fossil record and shells of stable low-Mg calcite, rhynchonelliform brachiopods are attractive sources of climate information via seawater temperature proxies such as stable oxygen isotope composition. In Terebratalia transversa (Sowerby) there is a progression towards oxygen isotope equilibrium in the calcite of the innermost secondary layer. This study confirms the lack of any vital effects influencing oxygen isotope composition of T. transversa, even in specialised areas of the innermost secondary layer. Calcite Mg/Ca ratio is another potential seawater temperature proxy, that has the advantage of not being influenced by salinity. Mg concentrations measured by electron microprobe analyses indicate that there is no concomitant decrease in Mg concentration towards the inner secondary layer, associated with the progressive shift towards oxygen isotope equilibrium. Mg distribution is heterogeneous throughout the shell and correlates with that of sulphur, which may be a proxy for organic components, suggesting that some of the Mg may not be in the calcite lattice. It is essential therefore, to determine the chemical environment of the magnesium ions to avoid any erroneous temperature extrapolations in brachiopods or any other calcite biomineral.


1969 ◽  
Vol 74 (25) ◽  
pp. 6012-6022 ◽  
Author(s):  
James R. O'Neil ◽  
Hugh P. Taylor

Sign in / Sign up

Export Citation Format

Share Document