scholarly journals Amino acid enantiomers in old and young dissolved organic matter: Implications for a microbial nitrogen pump

2019 ◽  
Vol 247 ◽  
pp. 207-219 ◽  
Author(s):  
Taylor A.B. Broek ◽  
Amy L. Bour ◽  
Hope L. Ianiri ◽  
Thomas P. Guilderson ◽  
Matthew D. McCarthy
Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 685
Author(s):  
Zhuo-Yi Zhu ◽  
Ying-Chun Zhou ◽  
Wen-Chao Ma ◽  
Ying Wu ◽  
Ming Li ◽  
...  

Due to the essential roles of dissolved organic matter (DOM) in both microbiol food loop and marine carbon cycling, changes in marine DOM composition have an important impact on the marine ecosystem and carbon cycling. In October 2014 and June 2015, two field investigations for the DOM in the upper 200 m were conducted in the slope region of the northern South China Sea to characterize the DOM composition via amino acid enantiomers. In June, our sampling locations were under upwelling impact induced by an eddy-pair event, whereas in October there were no eddies. High-frequency sampling (a few hours interval) over 24 h reveals that the variability of the amino acid carbon yield (min. 0.2%) and the D/L alanine ratio (min. 0.02) is larger than its corresponding analytical and propagated errors, suggesting solid short-term changes for these two molecular-based indicators. Section samples from June showed a lower D/L alanine ratio (0.43 vs. 0.53) and a GABA mol% (1.0% vs. 1.6%) relative to the section samples from October, suggesting that DOM in June is more fresh (less degraded) compared to that in October. A higher serine mol% (19.5% vs. 13.2%) and lower D/L serine ratio (0.06 vs. 0.24) from the diel observation in June relative to October further indicates that phytoplankton, rather than bacteria, plays an more important role in DOM composition alternation. This is consistent with the higher phytoplankton biomass found in June, promoted by the eddy-pair.


2007 ◽  
Vol 39 (11) ◽  
pp. 2926-2935 ◽  
Author(s):  
Holger Fischer ◽  
Axel Meyer ◽  
Klaus Fischer ◽  
Yakov Kuzyakov

2016 ◽  
Vol 283 (1839) ◽  
pp. 20160996 ◽  
Author(s):  
Noboru Katayama ◽  
Kobayashi Makoto ◽  
Osamu Kishida

Conventional food-web theory assumes that nutrients from dissolved organic matter are transferred to aquatic vertebrates via long nutrient pathways involving multiple eukaryotic species as intermediary nutrient transporters. Here, using larvae of the salamander Hynobius retardatus as a model system, we provide experimental evidence of a shortcut nutrient pathway by showing that H. retardatus larvae can use dissolved amino acids for their growth without eukaryotic mediation. First, to explore which amino acids can promote larval growth, we kept individual salamander larvae in one of eight different high-concentration amino acid solutions, or in control water from which all other eukaryotic organisms had been removed. We thus identified five amino acids (lysine, threonine, serine, phenylalanine, and tyrosine) as having the potential to promote larval growth. Next, using 15 N-labelled amino acid solutions, we demonstrated that nitrogen from dissolved amino acids was found in larval tissues. These results suggest that salamander larvae can take up dissolved amino acids from environmental water to use as an energy source or a growth-promoting factor. Thus, aquatic vertebrates as well as aquatic invertebrates may be able to use dissolved organic matter as a nutrient source.


2015 ◽  
Vol 12 (10) ◽  
pp. 7209-7255
Author(s):  
A. N. Loginova ◽  
C. Borchard ◽  
J. Meyer ◽  
H. Hauss ◽  
R. Kiko ◽  
...  

Abstract. The Eastern Tropical North Atlantic (ETNA) is an open ocean region with little input of terrestrial dissolved organic matter (DOM), suggesting that pelagic production has to be the main source of DOM. Inorganic nitrogen (DIN) and phosphorus (DIP) concentrations affect pelagic production, leading to DOM modifications. The quantitative and qualitative changes in DOM are often estimated by its optical properties. Colored DOM (CDOM) is often used to estimate dissolved organic carbon (DOC) concentrations by applied techniques, e.g. through remote sensing, whereas DOM properties, such as molecular weight, can be estimated from the slopes of the CDOM absorption spectra (S). Fluorescence properties of CDOM (FDOM) allow discriminating between different structural CDOM properties. The investigation of distribution and cycling of CDOM and FDOM was recognized to be important for understanding of physical and biogeochemical processes, influencing DOM. However, little information is available about effects of nutrient variability on CDOM and FDOM dynamics. Here we present results from two mesocosm experiments conducted with a natural plankton community of the ETNA, where effects of DIP ("Varied P") and DIN ("Varied N") supply on optical properties of DOM were studied. CDOM accumulated proportionally to phytoplankton biomass during the experiments. S decreased over time indicating accumulation of high molecular weight DOM. In Varied N, an additional CDOM portion, as a result of bacterial DOM reworking, was determined. It increased the CDOM fraction in DOC proportionally to the supplied DIN. The humic-like FDOM component (Comp.1) was derived by bacteria proportionally to DIN supply. The bound-to-protein amino acid-like FDOM component (Comp.2) was released irrespectively to phytoplankton biomass, but depending on DIP and DIN concentrations, as a part of an overflow mechanism. Under high DIN supply, Comp.2 was removed by bacterial reworking processes, leading to an accumulation of humic-like Comp.1. No influence of nutrient availability on amino acid-like FDOM component in peptide form (Comp.3) was observed. Comp.3 potentially acted as an intermediate product during formation or degradation Comp.2. Our findings suggest that changes in nutrient concentrations may lead to substantial responses in the quantity and "quality" of optically active DOM and, therefore, might bias results of the applied techniques for an estimation of DOC concentrations in open ocean regions.


Sign in / Sign up

Export Citation Format

Share Document