scholarly journals Using phenological monitoring in situ and historical records to determine environmental triggers for emergence and anthesis in the rare orchid Platanthera praeclara Sheviak & Bowles

2018 ◽  
Vol 16 ◽  
pp. e00461 ◽  
Author(s):  
Biederman Lori A ◽  
Anderson Derek ◽  
Sather Nancy ◽  
Pearson John ◽  
Beckman Judy ◽  
...  
2019 ◽  
Vol 32 (18) ◽  
pp. 5901-5913 ◽  
Author(s):  
Su Yang ◽  
Xiaolan L. Wang ◽  
Martin Wild

AbstractThis paper presents a study on long-term surface solar radiation (SSR) changes over China under clear- and all-sky conditions and analyzes the causes of the “dimming” and “brightening.” To eliminate the nonclimatic signals in the historical records, the daily SSR dataset was first homogenized using quantile-matching (QM) adjustment. The results reveal rapid dimming before 2000 not only under all-sky conditions, but also under clear-sky conditions, at a decline rate of −9.7 ± 0.4 W m−2 decade−1 (1958–99). This is slightly stronger than that under all-sky conditions at −7.4 ± 0.4 W m−2 decade−1, since the clear-sky dimming stopped 15 years later. A rapid “wettening” of about 40-Pa surface water vapor pressure (SWVP) from 1985 to 2000 was found over China. It contributed 2.2% to the SSR decline under clear-sky conditions during the whole dimming period (1958–99). Therefore, water vapor cannot be the main cause of the long-term dimming in China. After a stable decade (1999–2008), an intensive brightening appeared under the clear-sky conditions at a rate of 10.6 ± 2.0 W m−2 decade−1, whereas a much weaker brightening (−0.8 ± 3.1 W m−2 decade−1) has been observed under all-sky conditions between 2008 and 2016. The remarkable divergence between clear- and all-sky trends in recent decades indicates that the clouds played two opposite roles in the SSR changes during the past 30 years, by compensating for the declining SSR under the cloud-free conditions in 1985–99 and by counteracting the increasing SSR under cloud-free conditions in 2008–16. Aerosols remain as the main cause of dimming and brightening over China in the last 60 years, although the clouds counteract the effects of aerosols after 2000.


2019 ◽  
pp. 227-242 ◽  
Author(s):  
Francesco Chianucci

Since the 1960s, canopy photography has been widely used in forestry. Hemispherical photography has been the most widely used technique, but a great drawback of this method is its perceived sensitivity to hemispherical image acquisition and processing. Over the last decade, several alternative photographic approaches using restricted view angle have been proposed. Cover photography acquired via a normal lens was the first of the recently introduced photographic techniques. Use of a restricted view (often fixed) lens has subsequently contributed to the extension of canopy photography to new sensors and platforms, which ultimately have provided answers to some previous challenges regarding within-crown clumping correction, isolated and urban tree measurements, understory assessment, operational leaf inclination angle measurements, and phenological monitoring. This study provides a comprehensive review of the use of canopy photography in forestry and describes the theory and definitions of the variables used to quantify canopy structure. A case study is presented to illustrate and compare the different features and performance of the existing overstory photographic techniques; the results make it possible to suggest sampling strategies for consistent overstory canopy photographic measurements. Emerging operational fields of canopy photography are also described and discussed.


Author(s):  
C. P. Gommenginger ◽  
M. A. Srokosz ◽  
P. G. Challenor ◽  
P. D. Cotton

A novel source of ocean wave period information based on satellite altimeters measurements is examined and compared — using monthly mean climatologies — with ECMWF ERA 40 output and NDBC buoy historical records. The altimeter derived wave period appears to perform well in regions dominated by wind seas, including the Southern Ocean, but does not depict the large swell events observed in the ERA 40 output West of South America and Australia. Altimeter wave period compares well in magnitude and variability with NDBC buoy historical records in three geographical regions (Alaska, Gulf of Mexico, Central Pacific), but further validation of the altimeter model is required against in situ data in regions dominated by swell.


1984 ◽  
Vol 75 ◽  
pp. 743-759 ◽  
Author(s):  
Kerry T. Nock

ABSTRACTA mission to rendezvous with the rings of Saturn is studied with regard to science rationale and instrumentation and engineering feasibility and design. Future detailedin situexploration of the rings of Saturn will require spacecraft systems with enormous propulsive capability. NASA is currently studying the critical technologies for just such a system, called Nuclear Electric Propulsion (NEP). Electric propulsion is the only technology which can effectively provide the required total impulse for this demanding mission. Furthermore, the power source must be nuclear because the solar energy reaching Saturn is only 1% of that at the Earth. An important aspect of this mission is the ability of the low thrust propulsion system to continuously boost the spacecraft above the ring plane as it spirals in toward Saturn, thus enabling scientific measurements of ring particles from only a few kilometers.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Sign in / Sign up

Export Citation Format

Share Document