scholarly journals Wnt and BMP signaling crosstalk in regulating dental stem cells: Implications in dental tissue engineering

2016 ◽  
Vol 3 (4) ◽  
pp. 263-276 ◽  
Author(s):  
Fugui Zhang ◽  
Jinlin Song ◽  
Hongmei Zhang ◽  
Enyi Huang ◽  
Dongzhe Song ◽  
...  
2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Jessica Ratajczak ◽  
Annelies Bronckaers ◽  
Yörg Dillen ◽  
Pascal Gervois ◽  
Tim Vangansewinkel ◽  
...  

Within the field of tissue engineering, natural tissues are reconstructed by combining growth factors, stem cells, and different biomaterials to serve as a scaffold for novel tissue growth. As adequate vascularization and innervation are essential components for the viability of regenerated tissues, there is a high need for easily accessible stem cells that are capable of supporting these functions. Within the human tooth and its surrounding tissues, different stem cell populations can be distinguished, such as dental pulp stem cells, stem cells from human deciduous teeth, stem cells from the apical papilla, dental follicle stem cells, and periodontal ligament stem cells. Given their straightforward and relatively easy isolation from extracted third molars, dental stem cells (DSCs) have become an attractive source of mesenchymal-like stem cells. Over the past decade, there have been numerous studies supporting the angiogenic, neuroprotective, and neurotrophic effects of the DSC secretome. Together with their ability to differentiate into endothelial cells and neural cell types, this makes DSCs suitable candidates for dental tissue engineering and nerve injury repair.


2013 ◽  
Vol 7 (1) ◽  
pp. 76-81 ◽  
Author(s):  
S Lymperi ◽  
C Ligoudistianou ◽  
V Taraslia ◽  
E Kontakiotis ◽  
E Anastasiadou

Tooth loss or absence is a common condition that can be caused by various pathological circumstances. The replacement of the missing tooth is important for medical and aesthetic reasons. Recently, scientists focus on tooth tissue engineering, as a potential treatment, beyond the existing prosthetic methods. Tooth engineering is a promising new therapeutic approach that seeks to replace the missing tooth with a bioengineered one or to restore the damaged dental tissue. Its main tool is the stem cells that are seeded on the surface of biomaterials (scaffolds), in order to create a biocomplex. Several populations of mesenchymal stem cells are found in the tooth. These different cell types are categorized according to their location in the tooth and they demonstrate slightly different features. It appears that the dental stem cells isolated from the dental pulp and the periodontal ligament are the most powerful cells for tooth engineering. Additional research needs to be performed in order to address the problem of finding a suitable source of epithelial stem cells, which are important for the regeneration of the enamel. Nevertheless, the results of the existing studies are encouraging and strongly support the belief that tooth engineering can offer hope to people suffering from dental problems or tooth loss.


2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Anne Baudry ◽  
Emel Uzunoglu ◽  
Benoit Schneider ◽  
Odile Kellermann ◽  
Michel Goldberg

Author(s):  
Tran Le Bao Ha ◽  
Doan Nguyen Vu ◽  
To Minh Quan ◽  
Ngoc Phan Kim ◽  
Hung Hoang Tu ◽  
...  

Dental pulp cell research might open a promising application in tooth tissue regeneration. The aim of this study is to establish a protocol for in vitro culture the human dental pulp stem cells to apply in tissue engineering. Human premolar and impacted third molars were collected and disinfected. Dental pulp fragments were cultured with Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12 (DMEM/F12) medium supplemented with 10% Fetal Bovine Serum (FBS). Dental pulp stem cells (DPSCs) were identified using proliferation assay, RT-PCR and flow cytometry. Growth of DPSCs on dentin surface was assessed by MTT assay. The study showed that we successfully isolated, cultured and characterized dental pulp cells by outgrowth method. Cultured population of cells expressed in high level of Oct4, CD146, CD90, CD44. DPSCs proliferated on chemically and mechanically treated dentin surface. This research provides important information and a basis for further investigations to establish dental tissue engineering protocols.


2021 ◽  
Author(s):  
Ika Dewi Ana ◽  
Anggraini Barlian ◽  
Atik Choirul Hidajah ◽  
Christofora Hanny Wijaya ◽  
Hari Basuki Notobroto ◽  
...  

In dentistry, problems of craniofacial, osteochondral, periodontal tissue, nerve, pulp or endodontics injuries, and osteoarthritis need regenerative therapy. The use of stem cells in dental tissue engineering pays a lot of increased attention, but there are challenges for its clinical applications. Therefore, cell-free-based tissue engineering using exosomes isolated from stem cells is regarded an alternative approach in regenerative dentistry. However, practical use of exosome is restricted by limited secretion capability of cells. For future regenerative treatment with exosomes, efficient strategies for large-scale clinical applications are being studied, including the use of ceramics-based scaffold to enhance exosome production and secretion which can resolve limited exosome secretory from the cells when compared with the existing methods available. Indeed, more research needs to be done on these strategies going forward.


2018 ◽  
Vol 35 (4) ◽  
pp. 290-298
Author(s):  
Eric M. Davis

The epithelial cell rests of Malassez (ERM) were first described in 1817, yet their significance has remained an enigma for more than 200 years. Given their embryological origins and persistence in adult periodontal tissue, recent research has investigated whether the ERM could be useful as stem cells to regenerate tissues lost as a consequence of periodontitis. The objective of this review is to describe results of studies that have vigorously investigated the functional capabilities of ERM, particularly with regard to periodontal ligament homeostasis and prevention of dentoalveolar ankylosis. The significance of the ERM relative to evolution of the dental attachment apparatus will be examined. The current status of use of ERM as stem cells for dental tissue engineering and in other applications will be reviewed.


2010 ◽  
Vol 10 ◽  
pp. 901-916 ◽  
Author(s):  
Petar Zivkovic ◽  
Vladimir Petrovic ◽  
Stevo Najman ◽  
Vladisav Stefanovic

The development of biological and biomaterial sciences profiled tissue engineering as a new and powerful tool for biological replacement of organs. The combination of stem cells and suitable scaffolds is widely used in experiments today, in order to achieve partial or whole organ regeneration. This review focuses on the use of tissue engineering strategies in tooth regeneration, using stem cells and stem cells/scaffold constructs. Although whole tooth regeneration is still not possible, there are promising results. However, to achieve this goal, it is important to understand and further explore the mechanisms underlying tooth development. Only then will we be able to mimic the natural processes with the use of stem cells and tissue engineering techniques.


Sign in / Sign up

Export Citation Format

Share Document