Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana

Gene ◽  
2009 ◽  
Vol 429 (1-2) ◽  
pp. 98-103 ◽  
Author(s):  
Oksana V. Fursova ◽  
Gennady V. Pogorelko ◽  
Valentin A. Tarasov
2020 ◽  
Vol 61 (4) ◽  
pp. 787-802 ◽  
Author(s):  
Arifa Rahman ◽  
Yukio Kawamura ◽  
Masayoshi Maeshima ◽  
Abidur Rahman ◽  
Matsuo Uemura

Abstract Aquaporins play a major role in plant water uptake at both optimal and environmentally stressed conditions. However, the functional specificity of aquaporins under cold remains obscure. To get a better insight to the role of aquaporins in cold acclimation and freezing tolerance, we took an integrated approach of physiology, transcript profiling and cell biology in Arabidopsis thaliana. Cold acclimation resulted in specific upregulation of PIP1;4 and PIP2;5 aquaporin (plasma membrane intrinsic proteins) expression, and immunoblotting analysis confirmed the increase in amount of PIP2;5 protein and total amount of PIPs during cold acclimation, suggesting that PIP2;5 plays a major role in tackling the cold milieu. Although single mutants of pip1;4 and pip2;5 or their double mutant showed no phenotypic changes in freezing tolerance, they were more sensitive in root elongation and cell survival response under freezing stress conditions compared with the wild type. Consistently, a single mutation in either PIP1;4 or PIP2;5 altered the expression of a number of aquaporins both at the transcriptional and translational levels. Collectively, our results suggest that aquaporin members including PIP1;4 and PIP2;5 function in concert to regulate cold acclimation and freezing tolerance responses.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Elisa Schulz ◽  
Takayuki Tohge ◽  
Ellen Zuther ◽  
Alisdair R. Fernie ◽  
Dirk K. Hincha

2018 ◽  
Vol 98 (5) ◽  
pp. 1109-1118 ◽  
Author(s):  
Mervi M. Seppänen ◽  
Ville Alitalo ◽  
Hanna K. Bäckström ◽  
Kirsi Mäkiniemi ◽  
Venla Jokela ◽  
...  

Alfalfa (Medicago sativa L.) is one of the most popular forage legume crops worldwide. Its cultivation in the boreal and sub-boreal zone is restricted by inadequate winter hardiness, but global warming may increase its adaptability in these latitudes. Here, we examined variation in growth and freezing tolerance of four alfalfa cultivars recommended for the northern temperate climates of Europe (Alexis, Lavo, Live, and Nexus) and two cultivars with adaptation to milder or Mediterranean climates (Rangelander and Hunter River). Two experiments under controlled conditions (growth cessation and cold acclimation experiments) along with a 2-yr field experiment were conducted. Lavo was the most freezing-tolerant cultivar in both the cold acclimation and field experiments. Both Rangelander and Hunter River showed poor freezing tolerance. Lavo responded to decreasing temperatures, unlike the response to shorter day length, by allocating biomass to the roots. In general, better freezing tolerance was associated with high total nonstructural carbohydrate and low starch content. The field experiment results revealed that the more freezing-tolerant cultivars may have some advantages regarding yield, especially in the second year, but the differences between the cultivars were modest.


Sign in / Sign up

Export Citation Format

Share Document