Fibroblast growth factor 5-short (FGF5s) inhibits the activity of FGF5 in primary and secondary hair follicle dermal papilla cells of cashmere goats

Gene ◽  
2016 ◽  
Vol 575 (2) ◽  
pp. 393-398 ◽  
Author(s):  
Xiaolin He ◽  
Yuan Chao ◽  
Guangxian Zhou ◽  
Yulin Chen
2009 ◽  
Vol 18 (10) ◽  
pp. 889-892 ◽  
Author(s):  
Fumiaki Nakayama ◽  
Akiko Hagiwara ◽  
Miho Kimura ◽  
Makoto Akashi ◽  
Toru Imamura

2008 ◽  
Vol 4 ◽  
pp. BMI.S1173 ◽  
Author(s):  
M. Reiter ◽  
M.W. Pfaffl ◽  
M. Schönfelder ◽  
H.H.D. Meyer

Doping with anabolic agents is a topic in sports where strength is crucial, e.g. sprinting, weight lifting and many more. Testosterone and its functional analogs are the drugs of choice taken as pills, creams, tape or injections to increase muscle mass and body performance, and to reduce body fat. Stanozolol (17β-hydroxy-17α-methyl-5α-androst-2-eno[3,2c]pyrazol) is a testosterone analogue with the same anabolic effect like testosterone but its ring structure makes it possible to take it orally. Therefore, stanozolol is one of the most frequently used anabolic steroids. Common verification methods for anabolic drugs exist, identifying the chemicals in tissues, like hair or blood samples. The idea of this feasibility study was to search for specific gene expression regulations induced by stanozolol to identify the possible influence of the synthetically hormone on different metabolic pathways. Finding biomarkers for anabolic drugs could be supportive of the existing methods and an additional proof for illegal drug abuse. In two separate cell cultures, human HFDPC (hair follicle dermal papilla cells) from a female and a male donor were treated with stanozolol. In the female cell culture treatment concentrations of 0 nM (control), 1 nM, 10 nM and 100 nM were chosen. Cells were taken 0 h, 6 h, 24 h and 48 h after stimulation and totalRNA was extracted. Learning from the results of the pilot experiment, the male cell culture was treated in 10 nM and 100 nM concentrations and taken after 0 h, 6 h, 24 h and 72 h. Using quantitative real-time RT-PCR expression of characteristics of different target genes were analysed. Totally 13 genes were selected according to their functionality by screening the actual literature and composed to functional groups: factors of apoptosis regulation were Fas Ligand (FasL), its receptor (FasR), Caspase 8 and Bcl-2. Androgen receptor (AR) and both estrogen receptors (ERα, ERβ) were summarized in the steroid receptor group. The growth factor group included the insulin like growth factor receptor (IGF1R) and growth hormone receptor (GHR). Fibroblast growth factor 2 (FGF2) and keratinocyte growth factor (FGF7) were summarized in the hair cycle factor group. 5α-Steroidreductases (SRD5A1, SRD5A2) represented the enzyme group. Three reference genes were taken for relative quantification: ubiquitin (UBQ), glycerinaldehyde-3-phsophate-dehydrogenase (GAPDH), and β-actin (ACTB). In cell culture 1 AR, FasR, FGF2 showed significant regulations within one treatment time, significant gene expressions over time were analysed for Caspase 8. In cell culture 2 AR, FasR and SRD5A2 were significantly regulated within one treatment time. In this feasibility study first biomarker for a screening pattern of anabolic agents could be identified providing the rationality to investigate modified, metabolic pathways in the whole hair follicle.


2002 ◽  
Vol 290 (1) ◽  
pp. 169-176 ◽  
Author(s):  
Yutaka Ota ◽  
Yuko Saitoh ◽  
Satoshi Suzuki ◽  
Kazuo Ozawa ◽  
Mitsuko Kawano ◽  
...  

2020 ◽  
Author(s):  
Feng Yang ◽  
Zhihong Liu ◽  
Tianyu Che ◽  
Juntao Guo ◽  
Yuchun Xie ◽  
...  

Abstract Background: Human hair loss and regeneration has stimulated interest in the natural hair cycle worldwide; however, such research is difficult because the periodicity of human or mouse hair is not visually obvious. Dermal papilla cells (DP cells) play an important role in the development of hair follicles, but knowledge of the differentiation and mechanisms of DP stem cells during transition through the hair follicle cycle are still limited, although some studies have reported that DP cells may have an intermediate cell state during differentiation, the classification and function of specific cell states are not clear. Results: Here, we used cashmere goats, that have obvious periodicity of hair follicles, as model animals and, based on unbiased single cell RNA sequencing, we identified and isolated DP cell data. Pseudotime ordering analysis was used to successfully construct a DP cell lineage differentiation trajectory and revealed the sequential activation of key genes, signaling pathways, and functions involved in cell fate decisions. At the same time, we analyzed the mechanisms of different cell fates and revealed the function of four different intermediate cells: Intermediate cells 10 showed important functions in the growth of cashmere and maintenance of cashmere attachment to the skin; intermediate cells 1 revealed important functions in the process of apoptosis and cashmere shedding of secondary hair follicles; intermediate cells 0 initiated new follicular cycles and completed the migration of hair follicles and the occurrence of cashmere; and intermediate cells 15 are suggested to be DP progenitor cells. Conclusions: In development and apoptosis, inner bulge cells not only earlier than outer bulge cells, but occurred faster and was more thorough,this helps a deeper understanding of the role of bulge cells. Pseudogenes play another important role in function which promoted the competitive endogenous RNA (ceRNA) hybridization of pseudogenes.In different hair follicle cycles, DP cells will differentiate into different intermediate state cells and perform different functions, and the marker genes of the cells also changed. Intermediate cells 10 showed important functions in the growth of cashmere and maintenance of cashmere attachment to the skin; intermediate cells 1 revealed important functions in the process of apoptosis and cashmere shedding of secondary hair follicles; intermediate cells 0 initiated new follicular cycles and completed the migration of hair follicles and the occurrence of cashmere; and intermediate cells 15 are DP progenitor cells, this conclusion provides an unprecedented deeper understanding of the function of DP cells.


Sign in / Sign up

Export Citation Format

Share Document