scholarly journals Single-cell sequencing reveals the intermediate cell state and function of dermal papilla cells in the hair follicle cycle of cashmere goats

2020 ◽  
Author(s):  
Feng Yang ◽  
Zhihong Liu ◽  
Tianyu Che ◽  
Juntao Guo ◽  
Yuchun Xie ◽  
...  

Abstract Background: Human hair loss and regeneration has stimulated interest in the natural hair cycle worldwide; however, such research is difficult because the periodicity of human or mouse hair is not visually obvious. Dermal papilla cells (DP cells) play an important role in the development of hair follicles, but knowledge of the differentiation and mechanisms of DP stem cells during transition through the hair follicle cycle are still limited, although some studies have reported that DP cells may have an intermediate cell state during differentiation, the classification and function of specific cell states are not clear. Results: Here, we used cashmere goats, that have obvious periodicity of hair follicles, as model animals and, based on unbiased single cell RNA sequencing, we identified and isolated DP cell data. Pseudotime ordering analysis was used to successfully construct a DP cell lineage differentiation trajectory and revealed the sequential activation of key genes, signaling pathways, and functions involved in cell fate decisions. At the same time, we analyzed the mechanisms of different cell fates and revealed the function of four different intermediate cells: Intermediate cells 10 showed important functions in the growth of cashmere and maintenance of cashmere attachment to the skin; intermediate cells 1 revealed important functions in the process of apoptosis and cashmere shedding of secondary hair follicles; intermediate cells 0 initiated new follicular cycles and completed the migration of hair follicles and the occurrence of cashmere; and intermediate cells 15 are suggested to be DP progenitor cells. Conclusions: In development and apoptosis, inner bulge cells not only earlier than outer bulge cells, but occurred faster and was more thorough,this helps a deeper understanding of the role of bulge cells. Pseudogenes play another important role in function which promoted the competitive endogenous RNA (ceRNA) hybridization of pseudogenes.In different hair follicle cycles, DP cells will differentiate into different intermediate state cells and perform different functions, and the marker genes of the cells also changed. Intermediate cells 10 showed important functions in the growth of cashmere and maintenance of cashmere attachment to the skin; intermediate cells 1 revealed important functions in the process of apoptosis and cashmere shedding of secondary hair follicles; intermediate cells 0 initiated new follicular cycles and completed the migration of hair follicles and the occurrence of cashmere; and intermediate cells 15 are DP progenitor cells, this conclusion provides an unprecedented deeper understanding of the function of DP cells.

1991 ◽  
Vol 99 (3) ◽  
pp. 627-636 ◽  
Author(s):  
C.A. Jahoda ◽  
A.J. Reynolds ◽  
C. Chaponnier ◽  
J.C. Forester ◽  
G. Gabbiani

We have examined the expression of smooth muscle alpha-actin in hair follicles in situ, and in hair follicle dermal cells in culture by means of immunohistochemistry. Smooth muscle alpha-actin was present in the dermal sheath component of rat vibrissa, rat pelage and human follicles. Dermal papilla cells within all types of follicles did not express the antigen. However, in culture a large percentage of both hair dermal papilla and dermal sheath cells were stained by this antibody. The same cells were negative when tested with an antibody to desmin. Overall, explant-derived skin fibroblasts had relatively low numbers of positively marked cells, but those from skin regions of high hair-follicle density displayed more smooth muscle alpha-actin expression than fibroblasts from areas with fewer follicles. 2-D SDS-PAGE confirmed that, unlike fibroblasts, cultured papilla cells contained significant quantities of the alpha-actin isoform. The rapid switching on of smooth muscle alpha-actin expression by dermal papilla cells in early culture, contrasts with the behaviour of smooth muscle cells in vitro, and has implications for control of expression of the antigen in normal adult systems. The very high percentage of positively marked cultured papilla and sheath cells also provides a novel marker of cells from follicle dermis, and reinforces the idea that they represent a specialized cell population, contributing to the heterogeneity of fibroblast cell types in the skin dermis, and possibly acting as a source of myofibroblasts during wound healing.


2020 ◽  
Vol 6 (30) ◽  
pp. eaba1685 ◽  
Author(s):  
Shiqi Hu ◽  
Zhenhua Li ◽  
Halle Lutz ◽  
Ke Huang ◽  
Teng Su ◽  
...  

The progression in the hair follicle cycle from the telogen to the anagen phase is the key to regulating hair regrowth. Dermal papilla (DP) cells support hair growth and regulate the hair cycle. However, they gradually lose key inductive properties upon culture. DP cells can partially restore their capacity to promote hair regrowth after being subjected to spheroid culture. In this study, results revealed that DP spheroids are effective at inducing the progression of the hair follicle cycle from telogen to anagen compared with just DP cell or minoxidil treatment. Because of the importance of paracrine signaling in this process, secretome and exosomes were isolated from DP cell culture, and their therapeutic efficacies were investigated. We demonstrated that miR-218-5p was notably up-regulated in DP spheroid–derived exosomes. Western blot and immunofluorescence imaging were used to demonstrate that DP spheroid–derived exosomes up-regulated β-catenin, promoting the development of hair follicles.


2022 ◽  
Vol 65 (1) ◽  
pp. 11-19
Author(s):  
Yu Cui ◽  
Chunliang Wang ◽  
Lirong Liu ◽  
Nan Liu ◽  
Jianning He

Abstract. The objective of this study was to identify the expression and distribution of EPHA4 and Ephrin A3 genes in the development and morphogenesis of hair follicles in fine-wool sheep. The results could lay a theoretical basis for understanding the molecular mechanism that regulates hair follicle development. The skin of Aohan fine-wool sheep at different developmental stages (embryonic day 90, E90d, and 120, E120d, and postnatal day 1, B1d, and 30, B30d) were selected. Real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry were used to study the levels of mRNA and proteins, respectively. The RT-qPCR results showed that the mRNA expression level of EPHA4 at B1d was significantly lower than at E120d (p<0.01). The expression of Ephrin A3 at E120d was significantly higher than that at E90d and B1d (p<0.01). Immunohistochemical detection results showed that the level and localisation of EPHA4 and Ephrin A3 proteins had spatial and temporal specificity. EPHA4 expression in dermal papilla cells might be important for inducing Aohan fine-hair follicle regeneration and for controlling the properties of the hair. Ephrin A3 might play an important role in the redifferentiation of secondary hair follicles and might also be involved in the inhibition of apoptosis-related gene expression in hair follicles. The Ephrin A3 signalling pathway might accelerate the growth of fine-hair follicles and increase the density of hair follicles.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tatsuto Kageyama ◽  
Yang-Sook Chun ◽  
Junji Fukuda

AbstractHair regenerative medicine has emerged as a promising approach for the treatment of severe hair loss. Recent advances in three-dimensional tissue engineering, such as formation of hair follicle germs (HFGs), have considerably improved hair regeneration after transplantation in animal models. Here, we proposed an approach for fabricating HFGs containing vascular endothelial cells. Epithelial, dermal papilla, and vascular endothelial cells initially formed a single aggregate, which subsequently became a dumbbell-shaped HFG, wherein the vascular endothelial cells localized in the region of dermal papilla cells. The HFGs containing vascular endothelial cells exhibited higher expression of hair morphogenesis-related genes in vitro, along with higher levels of hair shaft regeneration upon transplantation to the dorsal side of nude mice, than those without vascular endothelial cells. The generated hair follicles represented functional characteristics, such as piloerection, as well as morphological characteristics comparable to those of natural hair shafts. This approach may provide a promising strategy for fabricating tissue grafts with higher hair inductivity for hair regenerative medicine.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7230 ◽  
Author(s):  
Ye Gao ◽  
Miaohan Jin ◽  
Yiyuan Niu ◽  
Hailong Yan ◽  
Guangxian Zhou ◽  
...  

Background Hair follicles in cashmere goats are divided into primary and secondary hair follicles (HFs). HF development, which determines the morphological structure, is regulated by a large number of vital genes; however, the key functional genes and their interaction networks are still unclear. Although the vitamin D receptor (VDR) is related to cashmere goat HF formation, its precise effects are largely unknown. In the present study, we verified the functions of key genes identified in previous studies using hair dermal papilla (DP) cells as an experimental model. Furthermore, we used CRISPR/Cas9 technology to modify the VDR in DP cells to dissect the molecular mechanism underlying HF formation in cashmere goats. Results The VDR expression levels in nine tissues of Shaanbei white cashmere goats differed significantly between embryonic day 60 (E60) and embryonic day 120 (E120). At E120, VDR expression was highest in the skin. At the newborn and E120 stages, the VDR protein was highly expressed in the root sheath and hair ball region of Shaanbei cashmere goats. We cloned the complete CDS of VDR in the Shaanbei white cashmere goat and constructed a VDR-deficient DP cell model by CRISPR/Cas9. Heterozygous and homozygous mutant DP cells were produced. The growth rate of mutant DP cells was significantly lower than that of wild-type DP cells (P < 0.05) and VDR mRNA levels in DP cells decreased significantly after VDR knockdown (P < 0.05). Further, the expression levels of VGF, Noggin, Lef1, and β-catenin were significantly downregulated (P < 0.05). Conclusions Our results indicated that VDR has a vital role in DP cells, and that its effects are mediated by Wnt and BMP4 signaling.


2020 ◽  
Vol 33 (5) ◽  
pp. 280-292
Author(s):  
Ehsan Taghiabadi ◽  
Mohammad Ali Nilforoushzadeh ◽  
Nasser Aghdami

The dermal papilla comprises mesenchymal cells in hair follicles, which play the main role in regulating hair growth. Maintaining the potential hair inductivity of dermal papilla cells (DPCs) and dermal sheath cells during cell culture is the main factor in in vitro morphogenesis and regeneration of hair follicles. Using common methods for the cultivation of human dermal papilla reduces the maintenance requirements of the inductive capacity of the dermal papilla and the expression of specific dermal papilla biomarkers. Optimizing culture conditions is therefore crucial for DPCs. Moreover, exosomes appear to play a key role in regulating the hair follicle growth through a paracrine mechanism and provide a functional method for treating hair loss. The present review investigated the biology of DPCs, the molecular and cell signaling mechanisms contributing to hair follicle growth in humans, the properties of the dermal papilla, and the effective techniques in maintaining hair inductivity in DPC cultures in humans as well as hair follicle bioengineering.


1998 ◽  
Vol 156 (1) ◽  
pp. 59-65 ◽  
Author(s):  
NA Hibberts ◽  
AE Howell ◽  
VA Randall

Androgens can gradually transform large scalp hair follicles to smaller vellus ones, causing balding. The mechanisms involved are unclear, although androgens are believed to act on the epithelial hair follicle via the mesenchyme-derived dermal papilla. This study investigates whether the levels and type of androgen receptors in primary lines of cultured dermal papilla cells derived from balding scalp hair follicles differ from those of follicles from non-balding scalp. Androgen receptor content was measured by saturation analysis using the non-metabolisable androgen, [3H]mibolerone (0.05-10 nM) in a 9-10 point assay. Pubic dermal fibroblasts and Shionogi cells were examined as positive controls. Repetitive assays of Shionogi cells showed good precision in the levels of androgen receptor content (coefficient of variation = 3.7%). Specific, high affinity, low capacity androgen receptors were detected in dermal papilla cells from both balding and non-balding follicles. Balding cells contained significantly (P < 0.01) greater levels of androgen receptors (Bmax = 0.06 +/- 0.01 fmol/10(4) cells (mean +/- S.E.M.)) than those from non-balding scalp (0.04 +/- 0.001). Competition studies with a range of steroids showed no differences in receptor binding specificity in the two cell types. The higher levels of androgen receptors in cells from balding scalp hair follicles with similar properties to those from non-balding scalp concur with the expectations from their in vivo responses to androgens. This supports the hypothesis that androgens act via the dermal papilla and suggests that cultured dermal papilla cells may offer a model system for studying androgen action in androgenetic alopecia.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1155
Author(s):  
Jiyu Hyun ◽  
Jisoo Im ◽  
Sung-Won Kim ◽  
Han Young Kim ◽  
Inwoo Seo ◽  
...  

Restoring hair follicles by inducing the anagen phase is a promising approach to prevent hair loss. Hair follicle dermal papilla cells (HFDPCs) play a major role in hair growth via the telogen-to-anagen transition. The therapeutic effect of Morus alba activates β-catenin in HFDPCs, thereby inducing the anagen phase. The HFDPCs were treated with M. alba root extract (MARE) to promote hair growth. It contains chlorogenic acid and umbelliferone and is not cytotoxic to HFDPCs at a concentration of 20%. It was demonstrated that a small amount of MARE enhances growth factor secretion (related to the telogen-to-anagen transition). Activation of β-catenin was observed in MARE-treated HFDPCs, which is crucial for inducing the anagen phase. The effect of conditioned medium derived from MARE-treated HFDPCs on keratinocytes and endothelial cells was also investigated. The findings of this study demonstrate the potency of MARE in eliciting the telogen-to-anagen transition.


Sign in / Sign up

Export Citation Format

Share Document