Contribution of biological crust to soil CO2 efflux in a Mediterranean shrubland ecosystem

Geoderma ◽  
2017 ◽  
Vol 289 ◽  
pp. 11-19 ◽  
Author(s):  
Lourdes Morillas ◽  
Veronica Bellucco ◽  
Mauro Lo Cascio ◽  
Serena Marras ◽  
Donatella Spano ◽  
...  
2009 ◽  
Vol 6 (5) ◽  
pp. 8633-8660
Author(s):  
B. Koehler ◽  
M. D. Corre ◽  
E. Veldkamp ◽  
J. P. Sueta

Abstract. Atmospheric nitrogen (N) deposition is rapidly increasing in tropical regions. We studied the response of soil carbon dioxide CO2 efflux to long-term experimental N-addition (125 kg N ha−1 yr-1) in mature lowland and montane forests in Panamá. In the lowland forest, on soils with high nutrient-supplying and buffering capacity, fine litterfall and stem-growth were neither N- nor phosphorus-limited. In the montane forest, on soils with low nutrient supplying capacity and an organic layer, fine litterfall and stem-growth were N-limited. Our objectives were to 1) explore the influence of soil temperature and moisture on the dynamics of soil CO2 efflux and 2) determine the responses of soil CO2 efflux from an N-rich and N-limited forest to elevated N input. Annual soil CO2-C efflux was larger from the lowland (15.20±1.25 Mg C ha−1) than the montane forest (9.36±0.29 Mg C ha−1). In the lowland forest, soil moisture explained the largest fraction of the variance in soil CO2 efflux while soil temperature was the main explanatory variable in the montane forest. Soil CO2 efflux in the lowland forest did not differ between the control and 9–11 yr N-addition plots, suggesting that chronic N input to nutrient-rich tropical lowland forests on well-buffered soils may not change their C balance in decadal scale. In the montane forest, first year N addition did not affect soil CO2 efflux but annual CO2 efflux was reduced by 14% and 8% in the 2- and 3 yr N-addition plots, respectively, compared to the control. This reduction was caused by a decrease in soil CO2 efflux during the high stem-growth period of the year, suggesting a shift in carbon partitioning from below- to aboveground in the N-addition plots where stem diameter growth was promoted.


2020 ◽  
Vol 1 (2) ◽  
pp. 171-179

Soil respiration is a major component of global carbon cycle. Therefore, it is crucial to understand the environmental controls on soil respiration for evaluating potential response of ecosystems to climate change. In a temperate deciduous forest (located in Northern-Hungary) we added or removed aboveground and belowground litter to determine total soil respiration. We investigated the relationship between total soil CO2 efflux, soil moisture, and soil temperature. Soil CO2 efflux was measured at each plot using soda-lime method. Temperature sensitivity of soil respiration (Q10) was monitored via measuring soil temperature on an hourly basis, while soil moisture was determined monthly. Soil respiration increased in control plots from the second year after implementing the treatment, but results showed fluctuations from one year to another. The effect of doubled litter was less significant than the effect of removal. Removed litter and root inputs caused substantial decrease in soil respiration. We found that temperature was more influential in the control of soil respiration than soil moisture. In plots with no litter Q10 varied in the largest interval. For treatment with doubled litter layer, temperature sensitivity of CO2 efflux did not change considerably. The effect of increasing soil temperature is more conspicuous to soil respiration in litter removal treatments since lack of litter causes greater irradiation. When exclusively leaf litter was considered, the effect of temperature on soil respiration was lower in treatments with added litter than with removed litter. Our results reveal that soil life is impacted by the absence of organic matter, rather than by an excess of organic matter. Results of CO2 emission from soils with different organic matter content can contribute to sustainable land use, considering the changed climatic factors caused by global climate change.


2020 ◽  
Vol 9 (1) ◽  
pp. 239-254
Author(s):  
Thomas Wutzler ◽  
Oscar Perez-Priego ◽  
Kendalynn Morris ◽  
Tarek S. El-Madany ◽  
Mirco Migliavacca

Abstract. Soil CO2 efflux is the second-largest carbon flux in terrestrial ecosystems. Its feedback to climate determines model predictions of the land carbon sink, which is crucial to understanding the future of the earth system. For understanding and quantification, however, observations by the most widely applied chamber measurement method need to be aggregated to larger temporal and spatial scales. The aggregation is hampered by random error that is characterized by occasionally large fluxes and variance heterogeneity that is not properly accounted for under the typical assumption of normally distributed fluxes. Therefore, we explored the effect of different distributional assumptions on the aggregated fluxes. We tested the alternative assumption of lognormally distributed random error in observed fluxes by aggregating 1 year of data of four neighboring automatic chambers at a Mediterranean savanna-type site. With the lognormal assumption, problems with error structure diminished, and more reasonable prediction intervals were obtained. While the differences between distributional assumptions diminished when aggregating data of single chambers to an annual value, differences were important on short timescales and were especially pronounced when aggregating across chambers to plot level. Hence we recommend as a good practice that researchers report plot-level fluxes with uncertainties based on the lognormal assumption. Model data integration studies should compare predictions and observations of soil CO2 efflux on a log scale. This study provides methodology and guidance that will improve the analysis of soil CO2 efflux observations and hence improve understanding of soil carbon cycling and climate feedbacks.


Sign in / Sign up

Export Citation Format

Share Document