Bacillus subtilis and surfactant amendments for the breakdown of soil water repellency in a sandy soil

Geoderma ◽  
2019 ◽  
Vol 344 ◽  
pp. 108-118 ◽  
Author(s):  
Mary-Anne Lowe ◽  
Falko Mathes ◽  
Meng Heng Loke ◽  
Gavan McGrath ◽  
Daniel V. Murphy ◽  
...  
Geoderma ◽  
2021 ◽  
Vol 402 ◽  
pp. 115264
Author(s):  
Enoch V.S. Wong ◽  
Philip R. Ward ◽  
Daniel V. Murphy ◽  
Matthias Leopold ◽  
Louise Barton

Biologia ◽  
2013 ◽  
Vol 68 (6) ◽  
Author(s):  
Ľubomír Lichner ◽  
Jozef Capuliak ◽  
Natalia Zhukova ◽  
Ladislav Holko ◽  
Henryk Czachor ◽  
...  

AbstractPines, used for sand dune stabilization, can influence the hydrophysical parameters and water flow in an aeolian sandy soil considerably, mainly due to soil water repellency. Two sites, separated by distance of about 20 m, formed the basis of our study. A control soil (“Pure sand“) with limited impact of vegetation or organic matter was formed at 50 cm depth beneath a forest glade area. This was compared to a “Forest soil” in a 30-year old Scots pine (Pinus sylvestris) forest. Most of the hydrophysical parameters were substantially different between the two soil surfaces. The forest soil was substantially more water repellent and had two-times the degree of preferential flow compared to pure sand. Water and ethanol sorptivities, hydraulic conductivity, and saturated hydraulic conductivity were 1%, 84%, 2% and 26% those of the pure sand, respectively. The change in soil hydrophysical parameters due to soil water repellency resulted in preferential flow in the forest soil, emerging during a simulated heavy rain following a long hot, dry period. The wetting front established in pure sand exhibited a form typical of that for stable flow. Such a shape of the wetting front can be expected in the forest soil in spring, when soil water repellency is alleviated substantially.


2018 ◽  
Vol 66 (4) ◽  
pp. 360-368 ◽  
Author(s):  
Massimo Iovino ◽  
Pavla Pekárová ◽  
Paul D. Hallett ◽  
Ján Pekár ◽  
Ľubomír Lichner ◽  
...  

Abstract The extent (determined by the repellency indices RI and RIc) and persistence (determined by the water drop penetration time, WDPT) of soil water repellency (SWR) induced by pines were assessed in vastly different geographic regions. The actual SWR characteristics were estimated in situ in clay loam soil at Ciavolo, Italy (CiF), sandy soil at Culbin, United Kingdom (CuF), silty clay soil at Javea, Spain (JaF), and sandy soil at Sekule, Slovakia (SeF). For Culbin soil, the potential SWR characteristics were also determined after oven-drying at 60°C (CuD). For two of the three pine species considered, strong (Pinus pinaster at CiF) and severe (Pinus sylvestris at CuD and SeF) SWR conditions were observed. Pinus halepensis trees induced slight SWR at JaF site. RI and RIc increased in the order: JaF < CuF < CiF < CuD < SeF, reflecting nearly the same order of WDPT increase. A lognormal distribution fitted well to histograms of RIc data from CuF and JaF, whereas CiF, CuD and SeF had multimodal distributions. RI correlated closely with WDPT, which was used to develop a classification of RI that showed a robust statistical agreement with WDPT classification according to three different versions of Kappa coefficient.


2014 ◽  
Vol 65 (3) ◽  
pp. 360-368 ◽  
Author(s):  
I. Kim ◽  
R. R. Pullanagari ◽  
M. Deurer ◽  
R. Singh ◽  
K. Y. Huh ◽  
...  

2013 ◽  
Vol 22 (4) ◽  
pp. 515 ◽  
Author(s):  
Naama Tessler ◽  
Lea Wittenberg ◽  
Noam Greenbaum

Variations in forest fires regime affect: (1) the natural patterns of community structure and vegetation; (2) the physico-chemical properties of soils and consequently (3) runoff, erosion and sediment yield. In recent decades the Mediterranean ecosystem of Mount Carmel, north-western Israel, is subjected to an increasing number of forest fires, thus, the objectives of the study were to evaluate the long-term effects of single and recurrent fires on soil water repellency (WR) and organic matter (OM) content. Water repellency was studied by applying water drop penetration time (WDPT) tests at sites burnt by single-fire, two fires, three fires and unburnt control sites. Water repellency in the burnt sites was significantly lower than in the unburnt control sites, and the soil maintained its wettability for more than 2 decades, whereas after recurrent fires, the rehabilitation was more complicated and protracted. The OM content was significantly lower after recurrent than after a single fire, causing a clear proportional decrease in WR. The rehabilitation of WR to natural values is highly dependent on restoration of organic matter and revegetation. Recurrent fires may cause a delay in recovery and reduced productivity of the soil for a long period.


2014 ◽  
Vol 27 (5) ◽  
pp. 1413-1423 ◽  
Author(s):  
Nicasio T. Jiménez‐Morillo ◽  
José A. González‐Pérez ◽  
Antonio Jordán ◽  
Lorena M. Zavala ◽  
José María Rosa ◽  
...  

Author(s):  
Jim J. Miller ◽  
Mallory Owen ◽  
Ben Ellert ◽  
Xueming Yang ◽  
Craig F. Drury ◽  
...  

Soil water repellency (SWR) was measured for a 28 yr field study under irrigation on a clay loam Dark Brown soil in southern Alberta. The objectives were to study the effect of legume-cereal crop rotations, feedlot manure, and phosphorus (P) fertilizer application on soil hydrophobicity (SH) and soil water repellency index (RI) under irrigation. Mean SH and RI were similar (P > 0.05) for a legume-cereal and cereal rotation, and were unaffected by P fertilization. However, P fertilization shifted the RI classification from slight to sub-critical. In contrast, SH was significantly greater for manured than non-manured treatments, while RI was unaffected. Soil organic carbon (SOC) concentration was significantly (P ≤ 0.05) correlated with SH (r=0.74), but not with RI (r=-0.17). This suggested a closer association between the quantity of SOC and quantity of hydrophobic compounds (SH method) compared to the hydrophobic coatings inhibiting infiltration of water (RI method). No significant correlation between SH and RI (r=-0.09) suggests that SH is not a good predictor of SWR using the RI method. Overall, manure application increased SH and P fertilization shifted the RI classification from slight to sub-critical. In contrast, legume-cereal rotations had no influence on SH and SWR using RI method compared to continuous cereal.


Sign in / Sign up

Export Citation Format

Share Document