The relative contribution of ammonia oxidizing bacteria and archaea to N2O emission from two paddy soils with different fertilizer N sources: A microcosm study

Geoderma ◽  
2020 ◽  
Vol 375 ◽  
pp. 114486 ◽  
Author(s):  
Qingling Fu ◽  
Ruize Xi ◽  
Jun Zhu ◽  
Hongqing Hu ◽  
Zhiqiang Xing ◽  
...  
2010 ◽  
Vol 10 (8) ◽  
pp. 1510-1516 ◽  
Author(s):  
Xin Chen ◽  
Li-Mei Zhang ◽  
Ju-Pei Shen ◽  
Zhihong Xu ◽  
Ji-Zheng He

2015 ◽  
Vol 99 (14) ◽  
pp. 6113-6123 ◽  
Author(s):  
Hu Li ◽  
Bo-Sen Weng ◽  
Fu-Yi Huang ◽  
Jian-Qiang Su ◽  
Xiao-Ru Yang

Author(s):  
Deyong Li ◽  
Fang Fang ◽  
Guoqiang Liu

Nitrification is an essential process for nutrient removal from wastewater and an important emission source of nitrous-oxide (N2O), which is a powerful greenhouse gas and a dominant ozone-depleting substance. In this study, nitrification and N2O emissions were tested in two weakly acidic (pH = 6.3–6.8) reactors: one with dissolved oxygen (DO) over 2.0 mg/L and the other with DO approximately 0.5 mg/L. Efficient nitrification was achieved in both reactors. Compared to the high-DO reactor, N2O emission in the low-DO reactor decreased slightly by 20% and had insignificant correlation with the fluctuations of DO (P = 0.935) and nitrite (P = 0.713), indicating that N2O might not be mainly produced via nitrifier denitrification. Based on qPCR, qFISH, functional gene amplicon and metagenome sequencing, it was found that complete ammonia oxidizer (comammox) Nitrospira significantly outnumbered canonical ammonia-oxidizing bacteria (AOB) in both weakly acidic reactors, especially in the low DO reactor with the comammox/AOB amoA gene ratio increasing from 6.6 to 17.1. Therefore, it was speculated that the enriched comammox was the primary cause for the slightly decreased N2O emission under long-term low DO in weakly acidic reactor. This study demonstrated that comammox Nitrospira can survive well under the weakly acidic and low-DO conditions, implying that achieving efficient nitrification with low N2O emission as well as low energy and alkalinity consumption is feasible for wastewater treatment. Importance Nitrification in wastewater treatment is an important process for eutrophication control and an emission source for greenhouse gas of N2O. The nitrifying process is usually operated at a slightly alkaline pH and high DO (>2 mg/L) to ensure efficient nitrification. However, it consumes a large amount of energy and chemicals especially for wastewater without sufficient alkalinity. This manuscript demonstrated that comammox can adapt well to the weakly acidic and low-DO bioreactors, with a result of efficient nitrification and low N2O emission. These findings indicate that comammox are significant for sustainable wastewater treatment, which provides an opportunity to achieve efficient nitrification with low N2O production as well as low energy and chemical consumption simultaneously.


2019 ◽  
Vol 16 (2) ◽  
pp. 207-222 ◽  
Author(s):  
Tong Yu ◽  
Qianlai Zhuang

Abstract. A group of soil microbes plays an important role in nitrogen cycling and N2O emissions from natural ecosystem soils. We developed a trait-based biogeochemical model based on an extant process-based biogeochemistry model, the Terrestrial Ecosystem Model (TEM), by incorporating the detailed microbial physiological processes of nitrification. The effect of ammonia-oxidizing Archaea (AOA), ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (NOB) was considered in modeling nitrification. Microbial traits, including microbial biomass and density, were explicitly considered. In addition, nitrogen cycling was coupled with carbon dynamics based on stoichiometry theory between carbon and nitrogen. The model was parameterized using observational data and then applied to quantifying global N2O emissions from global terrestrial ecosystem soils from 1990 to 2000. Our estimates of 8.7±1.6 Tg N yr−1 generally agreed with previous estimates during the study period. Tropical forests are a major emitter, accounting for 42 % of the global emissions. The model was more sensitive to temperature and precipitation and less sensitive to soil organic carbon and nitrogen contents. Compared to the model without considering the detailed microbial activities, the new model shows more variations in response to seasonal changes in climate. Our study suggests that further information on microbial diversity and ecophysiology features is needed. The more specific guilds and their traits shall be considered in future soil N2O emission quantifications.


2001 ◽  
Vol 1 ◽  
pp. 320-327
Author(s):  
M.I. Khalil ◽  
A.B. Rosenani ◽  
O. Van Cleemput ◽  
C.I. Fauziah ◽  
J. Shamshuddin

Development of appropriate land management techniques to attain sustainability and increase the N use efficiency of crops in the tropics has been gaining momentum. The nitrous oxides (N2Os) affect global climate change and its contribution from N and C management systems is of great significance. Thus, N transformations and N2O emission during maize-groundnut crop rotation managed with various N sources were studied. Accumulation of nitrate (NO3 –) and its disappearance happened immediately after addition of various N sources, showing liming effect. The mineral N retained for 2–4 weeks depending on the type and amount of N application. The chicken manure showed rapid nitrification in the first week after application during the fallow period, leading to a maximum N2O flux of 9889 μg N2O-N m–2 day– 1. The same plots showed a residual effect by emitting the highest N2O (4053 μg N2O-N m–2 day– 1) during maize cultivation supplied with a halfrate of N fertilizer. Application of N fertilizer only or in combination with crop residues exhibited either lowered fluxes or caused a sink during the groundnut and fallow periods due to small availability of substrates and/or low water-filled pore space (<40%). The annual N2O emission ranged from 1.41 to 3.94 kg N2O-N ha–1; the highest was estimated from the chicken manure plus crop residues and half-rate of inorganic N-amended plots. Results indicates a greater influence of chicken manure on the N transformations and thereby N2O emission.


2017 ◽  
Vol 109 ◽  
pp. 217-226 ◽  
Author(s):  
Yujie Men ◽  
Stefan Achermann ◽  
Damian E. Helbling ◽  
David R. Johnson ◽  
Kathrin Fenner

Sign in / Sign up

Export Citation Format

Share Document