Structurally controlled drainage basin development in the south of Menorca (Western Mediterranean, Spain)

Geomorphology ◽  
2005 ◽  
Vol 65 (1-2) ◽  
pp. 139-155 ◽  
Author(s):  
Bernadi Gelabert ◽  
Joan J. Fornós ◽  
Josep E. Pardo ◽  
Vicenç M. Rosselló ◽  
Francesca Segura
2017 ◽  
Author(s):  
George H. Shaw ◽  
◽  
Howard D. Mooers ◽  
Josef Smrz ◽  
Zdenek Papez ◽  
...  

2019 ◽  
Vol 11 (3) ◽  
pp. 1
Author(s):  
Eric Clausen

Detailed topographic maps covering a high elevation Bighorn-Powder River drainage divide segment in the southern Bighorn Mountains are used to test a recently proposed regional geomorphology paradigm. Fundamentally different from the commonly accepted paradigm the new paradigm predicts immense south-oriented continental ice sheet melt water floods once flowed across what is now the entire Missouri River drainage basin, in which the high Bighorn Mountains are located. Such a possibility is incompatible with commonly accepted paradigm expectations and previous investigators have interpreted Bighorn Mountains geomorphic history quite differently. The paradigm test began in the high glaciated Bighorn Mountains core area where numerous passes, or divide crossings, indicate multiple and sometimes closely spaced streams of water once flowed across what is now the Bighorn-Powder River drainage divide. To the south of the glaciated area, but still in a Precambrian bedrock region, the test found the roughly adjacent and parallel south-oriented North Fork Powder River and Canyon Creek headwaters located on opposite sides of the Bighorn-Powder River drainage divide with North Fork Powder River headwaters closely linked to a 300-meter deep pass through which south-oriented water had probably flowed. Shallower divide crossings located further to the south suggest diverging and converging streams of water once flowed not only across the Bighorn-Powder River drainage divide, but also across Powder River and Bighorn River tributary drainage divides. The paradigm test also found published geologic maps and reports showing the presence of possible flood transported and deposited alluvium. While unable to determine the water source, the new paradigm test did find evidence that large south-oriented floods had crossed what was probably a rising Bighorn Mountains mountain range.


2010 ◽  
Vol 181 (2) ◽  
pp. 171-181 ◽  
Author(s):  
Hugues Fenies ◽  
Gilles Lericolais ◽  
Henry W. Posamentier

Abstract This paper presents a comparison between the system tract architecture and the reservoir geometries of the Gironde and Leyre (Arcachon) incised-valley fills, both located within the Bay of Biscay 100 km apart. This study, based on high resolution seismic lines acquired by Ifremer on the continental shelf and onshore core and well data, illustrates that some features of the Gironde and Leyre valleys fills are similar while some others are not. The architecture of both valley fills is characterized by fifth order depositional sequences (corresponding to an interval from 120000 yr B.P. to present day). Both valleys are filled predominantly with transgressive systems tract, with associated poorly developed lowstand and highstand systems tracts. Key stratigraphic surfaces punctuate the valley-fill architecture and comprise deeply eroding tidal ravinement surfaces merged with and enhancing, earlier formed, fluvial-related erosive sequence boundaries. These tidal ravinement surfaces can be undulatory in form and in most places mark the basal boundary of the incised valleys. In contrast, nearly horizontal wave ravinement surfaces cap the incised-valley fills, extending over the adjacent interfluves. The Gironde and Leyre (Arcachon) valley fills exhibit two main stratigraphic differences: 1) transgressive systems tract sand bodies are ribbon shaped within the Gironde and tabular shaped within the Leyre; 2) lowstand systems tract deposits, represented by fluvial sediments, are preserved within the Gironde but absent within the Leyre. In a wave- and tide-dominated environment, the geometry of the sandbodies within the transgressive systems tract is a function of the tidal ravinement processes, which characterizes the estuary inlet. Two categories of tidal ravinement processes can be distinguished here: “anchored tidal ravinement” and “sweeping tidal ravinement”. The Gironde estuary is characterized by an “anchored tidal ravinement”. The tidal inlet has remained largely in a fixed location; littoral drift has not shifted the tidal inlet to the south because it is constrained by resistive Eocene carbonates that define the margins of the Gironde incised valley. In contrast, the Leyre estuary is characterized by a “sweeping tidal ravinement”. The inlet has been shifted approximately 30 km to the south by the formation of a littoral drift associated spit. This extensive lateral shifting was made possible by the fact that the incised valley was cut into unconsolidated, easily eroded Pleistocene sands. Within a wave- and tide-dominated environment, the preservation potential of the lowstand systems tract is a function of the size of the fluvial drainage basin. During lowstand time, the erosive power of the fluvial discharge was much greater within the much larger Gironde valley, consequently the fluvial sequence boundary was cut much deeper in the Gironde valley than within the Leyre valley and, correspondingly, the thickness of the associated fluvial deposits was commensurately greater. In response, the lowstand systems tract was not preserved within the Leyre valley fill because the depth of tidal ravinement erosion formed during the sea-level rise and associated transgression was greater than that associated with fluvial incision generated during the sea-level fall.


2012 ◽  
Vol 108 (3/4) ◽  
Author(s):  
Bruce S. Rubidge ◽  
P. John Hancox ◽  
Richard Mason

Clay Minerals ◽  
1985 ◽  
Vol 20 (2) ◽  
pp. 209-220 ◽  
Author(s):  
R. D. Wilmot

AbstractThe Wash drainage basin contains four principal river systems. Samples were collected from the freshwater and estuarine reaches of each of these, and silt- and clay-grade fractions were separated and examined by XRD. The clay mineralogy of each of the rivers is different; in the north the Witham sediments contain chlorite, the Welland and Nene samples contain vermiculite, with a higher proportion of kaolinite in the former, while in the south the Ouse sediments contain smectite. The clay fractions of the samples from the estuarine reaches all contain chlorite, confirming that non-fluvial sources must contribute to the sediments of the Wash. Comparison of this pattern of clay mineralogy with that for the underlying Jurassic and Cretaceous rocks shows that there was relatively little modification during the Pleistocene glacial periods. Such a pattern supports recent work which suggests that ice moved through the Wash gap and then fanned out from the Fenland area, rather than entering the region from the north.


Sign in / Sign up

Export Citation Format

Share Document