Late Quaternary aeolian sand deposition sustained by fluvial reworking and sediment supply in the Hexi Corridor — An example from northern Chinese drylands

Geomorphology ◽  
2015 ◽  
Vol 250 ◽  
pp. 113-127 ◽  
Author(s):  
Veit Nottebaum ◽  
Frank Lehmkuhl ◽  
Georg Stauch ◽  
Huayu Lu ◽  
Shuangwen Yi
Author(s):  
J. Knight

Abstract Slope and lowland sediment systems throughout southern Africa are dominated by the presence of colluvium with interbedded palaeosols and hardground duricrusts. These sediments correspond to phases of land surface instability and stability, respectively, during the late Quaternary. This study examines the stratigraphy and environmental interpretation of slope sediment records from specific sites in southern Africa for the period of marine isotope stages (MIS) 6 to 1 (~191 ka to present), informed by theoretical ideas of the dynamics of slope systems including sediment supply and accommodation space. Based on this analysis, phases of land surface instability and stability for the period MIS 6 to 1 are identified. The spatial and temporal patterns of land surface conditions are not a simple reflection of climate forcing, but rather reflect the workings of slope systems in response to climate in addition to the role of geologic, edaphic and ecological factors that operate within catchment-scale sediment systems. Considering these systems dynamics can yield a better understanding of the usefulness and limitations of slope sediment stratigraphies.


2008 ◽  
Vol 45 (3) ◽  
pp. 267-285 ◽  
Author(s):  
Thian Hundert ◽  
David J.W. Piper

The sedimentary record on continental slopes has the potential to preserve a record of glacial retreat on the adjacent continental shelf. The glacial history of the southwestern part of the Scotian Shelf is poorly known. Air-gun and high-resolution sparker profiles and numerous sediment cores up to 10 m long have been used to determine the character of sedimentation on the southwestern Scotian Slope since the last glacial maximum (LGM). Seismic-reflection profiles show that glacial till was deposited at shallow depths on the upper continental slope, and correlation to dated piston cores farther downslope show that this till dates from the LGM. Slope sedimentation at this time was dominated by local ice and deposited as plume fallout and turbidites. Progressively increasing importance of red-brown sediment derived from glacial supply to Laurentian Channel indicates retreat of ice from the shelf edge and diminishing supply of proglacial sediment from the calving embayment in the mid-Scotian Shelf. With the termination of distal proglacial sediment supply, the sedimentation rate diminished rapidly and hemipelagic sedimentation prevailed through the Holocene.


2019 ◽  
Vol 7 (2) ◽  
pp. T525-T545
Author(s):  
Yaxiong Sun ◽  
Wenlong Ding ◽  
Yang Gu ◽  
Gang Zhao ◽  
Siyu Shi ◽  
...  

Redbeds with a large thickness in the lower Cretaceous record abundant geologic information in the Minle Basin. We have conducted the paleoweathering conditions, provenance, and tectonic settings based on mineralogy and geochemistry. Our results indicate that mudstone samples are characterized by abundant illite with negligible amounts of K-feldspars and analcime. The lower part of the lower Cretaceous is rich in quartz, whereas the upper part is dominated by dolomite and analcime. We suggest that this is caused by the decreasing input of the clastic influx during the middle-late early Cretaceous. High index of compositional variation values (average 1.33) indicate first-cycle sediment supply, suggesting an overall compositional immaturity and short-distance transportation. These characteristics are consistent with an active regional extension tectonic setting. The [Formula: see text] system ([Formula: see text];[Formula: see text];[Formula: see text]) and Th/U versus Th consistently reveal that the lower Cretaceous experienced a positive gradient in chemical weathering from young to old formations. Although the patterns of trace elements in three formations of the lower Cretaceous are different, those of the rare earth elements (REEs) tend to be consistent. The significant enrichment of light REEs, heavy REEs fractionation, and distinctive negative Eu anomalies suggest derivation from an old, upper continental crust composed of predominantly felsic sediments. This interpretation is supported by several discrimination diagrams such as titanium dioxide-nickel ([Formula: see text]), which shows the characteristics of immature recycled sediments. A few sensitive elements, ratios, and normalized REE patterns indicate a provenance of an active continental margin and a continental island arc (CIA). The La-Th-Sc, Th-Co-Zr/10, and Th-Sc-Zr/10 discrimination plots further confirm the CIA signature. Thus, we conclude that the early Cretaceous redbeds in the Minle Basin, Hexi Corridor, were deposited in a dustpan-shaped half-graben basin in a CIA setting when northwest China was influenced by intense regional extension.


Geomorphology ◽  
2017 ◽  
Vol 299 ◽  
pp. 12-23 ◽  
Author(s):  
Honghua Lu ◽  
Dengyun Wu ◽  
Lu Cheng ◽  
Tianqi Zhang ◽  
Jianguo Xiong ◽  
...  

2002 ◽  
Vol 114 (9) ◽  
pp. 1131-1142 ◽  
Author(s):  
Gregory S. Hancock ◽  
Robert S. Anderson

Abstract Many river systems in western North America retain a fluvial strath-terrace rec ord of discontinuous downcutting into bedrock through the Quaternary. Their importance lies in their use to interpret climatic events in the headwaters and to determine long-term incision rates. Terrace formation has been ascribed to changes in sediment supply and/or water discharge produced by late Quaternary climatic fluctuations. We use a one-dimensional channel- evolution model to explore whether temporal variations in sediment and water discharge can generate terrace sequences. The model includes sediment transport, vertical bedrock erosion limited by alluvial cover, and lateral valley-wall erosion. We set limits on our modeling by using data collected from the terraced Wind River basin. Two types of experiments were performed: constant- period sinusoidal input histories and variable-period inputs scaled by the marine δ18O rec ord. Our simulations indicate that strath-terrace formation requires input variability that produces a changing ratio of vertical to lateral erosion rates. Straths are cut when the channel floor is protected from erosion by sediment and are abandoned—and terraces formed—when incision can resume following sediment-cover thinning. High sediment supply promotes wide valley floors that are abandoned as sediment supply decreases. In contrast, wide valleys are promoted by low effective water discharge and are abandoned as discharge increases. Widening of the valley floors that become terraces occurs over many thousands of years. The transition from valley widening to downcutting and terrace creation occurs in response to subtle input changes affecting local divergence of sediment-transport capacity. Formation of terraces lags by several thousand years the input changes that cause their formation. Our results suggest that use of terrace ages to set limits on the timing of a specific event must be done with the knowledge that the system can take thousands of years to respond to a perturbation. The incision rate calculated in the field from the lowest terrace in these systems will likely be higher than the rate calculated by using older terraces, because the most recent fluvial response in the field is commonly downcutting associated with declining sediment input since the Last Glacial Maximum. This apparent increase in incision rates is observed in many river systems and should not necessarily be interpreted as a response to an increase in rock-uplift rate.


Tectonics ◽  
2013 ◽  
Vol 32 (2) ◽  
pp. 271-293 ◽  
Author(s):  
Wen-Jun Zheng ◽  
Pei-Zhen Zhang ◽  
Wei-Peng Ge ◽  
Peter Molnar ◽  
Hui-Ping Zhang ◽  
...  

2009 ◽  
Vol 71 (3) ◽  
pp. 426-436 ◽  
Author(s):  
Ralf Hesse

AbstractAeolian dunes are widely used to reconstruct paleoenvironmental conditions. However, terminal dune fields (ergs) in the coastal desert of southern Peru – where information regarding Quaternary paleoenvironmental conditions is very limited – have until now not been used for paleoenvironmental reconstructions and the time depth of their accumulation is unknown. Here, different estimates are derived to constrain the time depth recorded in the Dunas Pampa Blanca, a terminal dune field in coastal southern Peru. Dune field age is calculated using the volume of the Dunas Pampa Blanca and (i) recent aeolian transport rate in migrating transverse dunes feeding the Dunas Pampa Blanca (derived from digital processing of sequential Landsat and Quickbird images) and (ii) limitations posed by recent fluvial sediment supply to the source of aeolian transport. The resulting maximum age estimate of 70 ± 8 ka (from aeolian transport) compares with a minimum age estimate of 4–75 ka (from sediment supply). However, a minimum age estimate of 110–450 ka is deduced from the tectonic and topographic evolution of the region. This discrepancy contradicts the hypothesis of late Quaternary stability in the Peruvian coastal desert and indicates that recent conditions of aeolian sediment supply and transport are not representative for the late Quaternary.


Sign in / Sign up

Export Citation Format

Share Document