aeolian transport
Recently Published Documents


TOTAL DOCUMENTS

167
(FIVE YEARS 43)

H-INDEX

30
(FIVE YEARS 3)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Katharina Tholen ◽  
Thomas Pähtz ◽  
Hezi Yizhaq ◽  
Itzhak Katra ◽  
Klaus Kroy

AbstractAeolian sand transport is a major process shaping landscapes on Earth and on diverse celestial bodies. Conditions favoring bimodal sand transport, with fine-grain saltation driving coarse-grain reptation, give rise to the evolution of megaripples with a characteristic bimodal sand composition. Here, we derive a unified phase diagram for this special aeolian process and the ensuing nonequilibrium megaripple morphodynamics by means of a conceptually simple quantitative model, grounded in the grain-scale physics. We establish a well-preserved quantitative signature of bimodal aeolian transport in the otherwise highly variable grain size distributions, namely, the log-scale width (Krumbein phi scale) of their coarse-grain peaks. A comprehensive collection of terrestrial and extraterrestrial data, covering a wide range of geographical sources and environmental conditions, supports the accuracy and robustness of this unexpected theoretical finding. It could help to resolve ambiguities in the classification of terrestrial and extraterrestrial sedimentary bedforms.


2021 ◽  
Vol 13 (21) ◽  
pp. 4488
Author(s):  
Bianca R. Charbonneau ◽  
Stephanie M. Dohner

Aeolian transport affects beach and foredune pre-storm morphologies, which directly contribute to storm responses. However, significant spatiotemporal variation exists within beach-dune systems regarding how biotic and abiotic factors affect topography. There are multiple metrics for quantifying topographic change, with varying pros and cons, but understanding how a system changes across spatiotemporal scales relative to varying forcings is necessary to accurately model and more effectively manage these systems. Beach and foredune micro- and mesoscale elevation changes (Δz) were quantified remotely and in situ across a mid-Atlantic coastal system. The microscale field collections consisted of 27 repeat measurements of 73 elevation pins located in vegetated, transitional, and unvegetated foredune microhabitats over three years (2015 to 2018) during seasonal, event-based, and background wind-condition collections. Unoccupied aerial System (UAS) surveys were collected to link microscale point Δz to mesoscale topographic change. Microscale measurements highlight how Δz varies more pre- to post-event than seasonally or monthly, but regardless of collection type (i.e., seasonal, monthly, or event-based), there was lower Δz in the vegetated areas than in the associated unvegetated and partially vegetated microhabitats. Despite lower Δz values per pin measurement, over the study duration, vegetated pins had a net elevation increase of ≈20 cm, whereas transitional and unvegetated microhabitats had much lower change, near-zero net gain. These results support vegetated microhabitats being more stable and having better sediment retention than unvegetated and transitional areas. Comparatively, mesoscale UAS surfaces typically overestimated Δz, such that variation stemming from vegetation across microhabitats was obscured. However, these data highlight larger mesoscale habitat impacts that cannot be determined from point measurements regarding volumetric change and feature mapping. Changes in features, such as beach access paths, that are associated with increased dynamism are quantifiable using mesoscale remote sensing methods rather than microscale methods. Regardless of the metric, maintaining baseline data is critical for assessing what is captured and missed across spatiotemporal scales and is necessary for understanding the contributors to heterogeneous topographic change in sandy coastal foredunes.


2021 ◽  
Vol 91 (9) ◽  
pp. 929-944
Author(s):  
Jocelyn N. Reahl ◽  
Marjorie D. Cantine ◽  
Julia Wilcots ◽  
Tyler J. Mackey ◽  
Kristin D. Bergmann

ABSTRACT Quantitative analysis of quartz microtextures by means of scanning electron microscopy (SEM) can reveal the transport histories of modern and ancient sediments. However, because workers identify and count microtextures differently, it is difficult to directly compare quantitative microtextural data analyzed by different workers. As a result, the defining microtextures of certain transport modes and their probabilities of occurrence are not well constrained. We used principal-component analysis (PCA) to directly compare modern and ancient aeolian, fluvial, and glacial samples from the literature with nine new samples from active aeolian and glacial environments. Our results demonstrate that PCA can group microtextural samples by transport mode and differentiate between aeolian transport and fluvial and glacial transport across studies. The PCA ordination indicates that aeolian samples are distinct from fluvial and glacial samples, which are in turn difficult to disambiguate from each other. Ancient and modern sediments are also shown to have quantitatively similar microtextural relationships. Therefore, PCA may be a useful tool to constrain the ambiguous transport histories of some ancient sediment grains. As a case study, we analyzed two samples with ambiguous transport histories from the Cryogenian Bråvika Member (Svalbard). Integrating PCA with field observations, we find evidence that the Bråvika Member facies investigated here includes aeolian deposition and may be analogous to syn-glacial Marinoan aeolian units including the Bakoye Formation in Mali and the Whyalla Sandstone in South Australia.


Author(s):  
Xinchun Liu ◽  
Yongde Kang ◽  
Hongna Chen ◽  
Hui Lu

Sand collectors are important for quantitatively monitoring aeolian sand activities. In this paper, an automatic high-precision sand collector was designed. Based on the measured data of aeolian transport performed with a piezoelectric saltation sensor (H11-Sensit) and a 10 m high meteorological tower, the sampling efficiency of the automatic sand sampler and the horizontal dust flux of the near surface were analyzed based on observed data. The results were as follows: the best-fitting function between the number of impacting sand particles and the amount of collected sand was a linear relationship. The average value of R2 was 0.7702, and the average sand collection efficiency of the sand collector at a height of 5 cm was 94.3%, indicating good sand collection performance. From all field tests conducted so far, it appeared that a high-precision sand sampler was a useful device for making field measurements of horizontal dust fluxes and ascertaining the relationship between transition particles and wind speed. In the future, the equipment costs and wind drive will continue to be optimized.


2021 ◽  
Vol 9 (2) ◽  
pp. 72-79
Author(s):  
Renata Dulias

Abstract The paper presents changes in the landscape of inland dunes in one of the basins in the eastern part of Silesian Upland. Based on the analysis of archival maps and historical sources, the former dune landscape of Dąbrowa Basin was reconstructed. The current state of its preservation was determined based on contemporary cartographic materials and field research. It was established that the dunes occur on the floodplain, under-slope flattening, and cuesta escarpment (Ząbkowice Hummock)). The source of aeolian sands was fluvioglacial and alluvial deposits, which, as a result of aeolian transport, were moved to higher and higher morphological levels and stabilized on a substrate of different lithology and age. The impermeability of the bedrock – tills, clays, mudstones, siltstones had a significant influence on the dune landscape. It resulted in the presence of wetlands and peat bogs in the vicinity of most dunes. Consequently, the landscape of the valley was distinguished by a lot of contrast in terms of vegetation - dry pine forests or grassy areas on the dunes and moisture-loving vegetation in their surroundings. However, this landscape was under strong human pressure. Most of the dunes (3/4) have been destroyed in the last hundred years due to sand mining and industrial and residential construction. One of the largest dune fields in the Przemsza River basin and most floodplain and under-slope flattening dunes were utterly destroyed. In addition, an interesting dune at Triassic clays was almost fully exploited, and a rare case on the Silesian Upland where a dune entered the Triassic limestones was partially covered with concrete. There are only 25 dunes in the study area - they deserve protection both as the last fragments of the inland dunes landscape in this part of the Silesian Upland and for historical and natural reasons.


Author(s):  
Xinchun Liu ◽  
Yongde Kang ◽  
Hongna Chen ◽  
Hui Lu

The sand-dust horizontal flux is an important parameter for the study on aeolian sand transport, as well as an important foundation. In this study, a field experiment was developed to measure the data of aeolian transport and microclimate during different dust events with an auto sand sampler, a piezoelectric saltation sensor (H11-Sensit) and a 10 m high meteorological tower in Ta Zhong, the hinterland of the Taklimakan Desert from July to August in 2010. Then, the sampling efficiency of auto sand sampler and horizontal dust flux of near surface were analyzed based on observed data. The results were as follows: sand collector skip turnover increased with the increase of the intensity of dust weather frequency increases, the power function relationship y=2.115 x0.9841, R2 = 0.9206, flip frequency per minute increased from 0.2794 times to 1.3041 times, change is obvious; With the strength of the weather, time to flip the average sediment is shrinking. Sandstorm weather, skip to flip a volume of 3.7160 g, grade I flying sand weather flip a volume of 4.0275 g, the amount of class II flying sand weather turns over a 5. 0035g.The horizontal dust flux of different dust events that calculated with the equation Q=256M; the maximum of one dust event was about 190.335 kg, and the minimum was 1.2 kg. Overall, the sand transportation rate increased with wind speed. However, the changes of sand transportation rate did not quite fit in with wind speed during some dust events, and in this case the corresponding surface temperature was significantly higher. The experimental data obtained can provide theoretical basis for regional sand control and enacting effective engineering measures.


2021 ◽  
Author(s):  
Shlomy Vainer ◽  
Yoav Ben Dor

<p>The extensivity of sand dunes in continental interiors makes the understating of their morphodynamical properties valuable for palaeoenvironmental reconstructions and the interpretation of landscape evolution. Nevertheless, the study of aeolian landscape development at the million-years timescale is hampered by the complex interaction of factors determining dune migration and the inherently self-destructive nature of their chronostratigraphy, thus limiting the applicability of traditional luminescence-based dating methods for configuring processes beyond ~300 Ka. In this study, we present a standalone program that simulates aeolian transport based on luminescence-derived chronologies coupled with numerical modelling of cosmogenic nuclides accumulation. This integrative approach reveals ancient phases of sand irruption and provides a data-based scheme facilitating the morphodynamical study of aeolian processes over multiple timescales. We present a case study of the program application by analyzing data from the Australian Simpson Desert, unfolding several phases of aeolian vitality since the late Pliocene. The synchronicity of the results with drastic changes in environmental settings exemplifies the applicability of process-based modelling in constructing a timeframe of key landscape evolution events in arid environments by studying aeolian landforms. Finally, the relationships between model parameters used to determine environmental settings on sand migration patterns make the program a powerful tool to further investigating triggers and mechanisms of aeolian processes.</p>


2021 ◽  
Author(s):  
Jean-luc Velotiana Ralaiarisoa ◽  
Florence Naaim ◽  
Kenji Kosugi ◽  
Masaki Nemoto ◽  
Yoichi Ito ◽  
...  

<p>Aeolian transport of particles occurs in many geophysical contexts such as wind-blown sand or snow drift and is governed by a myriad of physical mechanisms. Most of drifting particles are transported within a saltation layer and has been largely studied for cohesionless particles whether for snow or for sand. Thus, the theoretical description of aeolian transport has been greatly improved for the last decades. In contrast cohesive particles-air system have received much less attention and there remain many important physical issues to be addressed.  </p><p>In the present study, the characteristics of drifting cohesive snow phenomena is investigated experimentally. Several wind tunnel experiments were carried out in the Cryopsheric Environment simulator at Shinjo (Sato et al., 2001). Spatial distribution of wind velocity and the mass flux of drifting snow were measured simultaneously by an ultrasonic anemometer and a snow particle counter. Compacted snow was sifted on the floor and left for a determined duration time to become cohesive by sintering. Two kinds of snow beds with different compression hardness were used (“hard snow” with a compression hardness of about 60 kPa and “semi hard snow” with a compression hardness of about 30 kPa). Wind tunnel velocity varied from 7 m/s to 15 m/s. Moreover steady snow drifting can be produced by seeding snow particles at a constant rate at the upwind of the test section.</p><p>It was shown that :</p><p>- on hard snow cover, aerodynamic entrainment does not occur and saltating particles from the seeder just rebounded without splashing particles composing the snow surface (Kosugi et al.,2004). At a given transport rate, the characteristic decay length lν,which can be seen as an estimation of the height of the saltating layer, exhibits a quadratic dependence with the air friction speed, u*. It is in agreement with results obtained by Ho (2011) with saltating sand on non-erodible bed. More surprisingly, lν increases with snow particles diameter, which means that restitution coefficient over hard snow cover also increases with snow particles diameters.</p><p> - On loose snow cover, without seeder, data analysis from  Sugiura et al. (1998), shows that lv is proportional to u* to the power 1.4. This results therefore supports the idea that cohesionless snow doesn’t exist: on erodible sand bed configuration, the decay length is invariant (Ho, 2012).</p><p>-on semi hard snow cover, without seeder, the inter-particle cohesion makes the transport unsteady and spatially inhomogeneous. lv is proportional to u* to the power 1.6. It is therefore an intermediate case between “loose” and “hard “snow. Restitution coefficient on semi-hard snow is higher than on loose snow cover but smaller than on hard snow cover.  Particles are mainly lifted through aerodynamic entrainment so that saturation length is not obtained in the wind-tunnel : the transport rate  is two orders of magnitude lower than   the maximum transport rate observed for loose snow.</p><p>-on semi hard snow cover, with seeder, the drifting snow flux dramatically increases, even for low wind speed, leading sometimes to snow cover vanish. Experimental results provide evidence that impacting particles are efficient to lift cohesive snow particles : the transport rate increases to nearly 10.</p>


2021 ◽  
Author(s):  
Sokaina Tadoumant ◽  
Ilham Bouimetarhan ◽  
Martin Koelling ◽  
Asmae Baqloul ◽  
Lhoussaine Bouchaou

<p>      Terrestrial signals in marine sediment archives are frequently used for paleoclimate reconstructions. A little is known about the origin of terrestrial components such as pollen and spores, organic and inorganic elements in the sedimentary archives. The aims of this study is to investigate the geographic distribution pattern of pollen and spores in southern Morocco in relation to environmental gradients, and different transport mechanisms in order to link temporal variations in marine sediment cores to environmental changes in southern Morocco. Pollen taxa of Argania spinosa, Cichorioideae, Poaceae and Cyperaceae exhibit high percentages and concentrations in the semi-arid Souss Massa basin and the relatively humid Tensift basin accompanied with higher values of Fe/Ca and Ti/Al. Moreover, the simulation between distribution of Olea/Phillyrea and Ti/Al ratio suggests that Olea/Phillyrea are mainly dispersed by wind transport. However, Artemisia and Quercus distributions are limited to the south of High Atlas and the northern Anti Atlas. Chenopodiaceae, Caryophyllaceae , and Amaranthaceae (CCA) show a maximum percentages in littoral sites especially of Souss and Draa basins according to the important production of pollen quantities, the  high values of CCA from north to south of study area are indicated the starts of Saharan-type climate with increasing values of Acacia, Ziziphus, Asphodelus and Tamarix taxa may indicate plants adaptation to droughts, and/or a dominant aeolian transport. The South of Morocco which is known by higher wind inflows and low rainfall during the year occurring as occasional events during the winter, we conclude that pollen are primarily transported by the NE trade winds and occasionally with rivers in the basins.</p>


Sign in / Sign up

Export Citation Format

Share Document