scholarly journals Super tau-covers of bihamiltonian integrable hierarchies

Author(s):  
Si-Qi Liu ◽  
Zhe Wang ◽  
Youjin Zhang
2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
S. Y. Lou ◽  
X. B. Hu ◽  
Q. P. Liu

Abstract It is shown that the relativistic invariance plays a key role in the study of integrable systems. Using the relativistically invariant sine-Gordon equation, the Tzitzeica equation, the Toda fields and the second heavenly equation as dual relations, some continuous and discrete integrable positive hierarchies such as the potential modified Korteweg-de Vries hierarchy, the potential Fordy-Gibbons hierarchies, the potential dispersionless Kadomtsev-Petviashvili-like (dKPL) hierarchy, the differential-difference dKPL hierarchy and the second heavenly hierarchies are converted to the integrable negative hierarchies including the sG hierarchy and the Tzitzeica hierarchy, the two-dimensional dispersionless Toda hierarchy, the two-dimensional Toda hierarchies and negative heavenly hierarchy. In (1+1)-dimensional cases the positive/negative hierarchy dualities are guaranteed by the dualities between the recursion operators and their inverses. In (2+1)-dimensional cases, the positive/negative hierarchy dualities are explicitly shown by using the formal series symmetry approach, the mastersymmetry method and the relativistic invariance of the duality relations. For the 4-dimensional heavenly system, the duality problem is studied firstly by formal series symmetry approach. Two elegant commuting recursion operators of the heavenly equation appear naturally from the formal series symmetry approach so that the duality problem can also be studied by means of the recursion operators.


2001 ◽  
Vol 78 (3-4) ◽  
pp. 233-253 ◽  
Author(s):  
H. Aratyn ◽  
J.F. Gomes ◽  
E. Nissimov ◽  
S. Pacheva

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Jean-Emile Bourgine

Abstract In [1], Nakatsu and Takasaki have shown that the melting crystal model behind the topological strings vertex provides a tau-function of the KP hierarchy after an appropriate time deformation. We revisit their derivation with a focus on the underlying quantum W1+∞ symmetry. Specifically, we point out the role played by automorphisms and the connection with the intertwiner — or vertex operator — of the algebra. This algebraic perspective allows us to extend part of their derivation to the refined melting crystal model, lifting the algebra to the quantum toroidal algebra of $$ \mathfrak{gl} $$ gl (1) (also called Ding-Iohara-Miki algebra). In this way, we take a first step toward the definition of deformed hierarchies associated to A-model refined topological strings.


1999 ◽  
Vol 68 (10) ◽  
pp. 3204-3207
Author(s):  
Zuonong Zhu ◽  
Hongci Huang ◽  
Weimin Xue

1999 ◽  
Vol 14 (07) ◽  
pp. 1001-1013 ◽  
Author(s):  
KANEHISA TAKASAKI

The u-plane integrals of topologically twisted N=2 supersymmetric gauge theories generally contain contact terms of nonlocal topological observables. This paper proposes an interpretation of these contact terms from the point of view of integrable hierarchies and their Whitham deformations. This is inspired by Mariño and Moore's remark that the blowup formula of the u-plane integral contains a piece that can be interpreted as a single-time tau function of an integrable hierarchy. This single-time tau function can be extended to a multitime version without spoiling the modular invariance of the blowup formula. The multitime tau function is comprised of a Gaussian factor eQ(t1,t2,…) and a theta function. The time variables tn play the role of physical coupling constants of two-observables In(B) carried by the exceptional divisor B. The coefficients qmn of the Gaussian part are identified to be the contact terms of these two-observables. This identification is further examined in the language of Whitham equations. All relevant quantities are written in the form of derivatives of the prepotential.


Sign in / Sign up

Export Citation Format

Share Document