Field performances of energy pile based on the secondary utilization of sonic logging pipes

Author(s):  
Yang Zhou ◽  
Gangqiang Kong ◽  
Qing Yang
Keyword(s):  
Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. D245-D261 ◽  
Author(s):  
Jaime Meléndez-Martínez ◽  
Douglas R. Schmitt

We obtained the complete set of dynamic elastic stiffnesses for a suite of “shales” representative of unconventional reservoirs from simultaneously measured P- and S-wave speeds on single prisms specially machined from cores. Static linear compressibilities were concurrently obtained using strain gauges attached to the prism. Regardless of being from static or dynamic measurements, the pressure sensitivity varies strongly with the direction of measurement. Furthermore, the static and dynamic linear compressibilities measured parallel to the bedding are nearly the same whereas those perpendicular to the bedding can differ by as much as 100%. Compliant cracklike porosity, seen in scanning electron microscope images, controls the elastic properties measured perpendicular to the rock’s bedding plane and results in highly nonlinear pressure sensitivity. In contrast, those properties measured parallel to the bedding are nearly insensitive to stress. This anisotropy to the pressure dependency of the strains and moduli further complicates the study of the overall anisotropy of such rocks. This horizontal stress insensitivity has implications for the use of advanced sonic logging techniques for stress direction indication. Finally, we tested the validity of the practice of estimating the fracture pressure gradient (i.e., horizontal stress) using our observed elastic engineering moduli and found that ignoring anisotropy would lead to underestimates of the minimum stress by as much as 90%. Although one could ostensibly obtain better values or the minimum stress if the rock anisotropy is included, we would hope that these results will instead discourage this method of estimating horizontal stress in favor of more reliable techniques.


2021 ◽  
Vol 1838 (1) ◽  
pp. 012061
Author(s):  
Qihui Zhou ◽  
Zhanjun Huang ◽  
Yong Wu ◽  
Huipeng Zhang ◽  
Yufeng Shi ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3873
Author(s):  
Guozhu Zhang ◽  
Ziming Cao ◽  
Yiping Liu ◽  
Jiawei Chen

Investigation on the long-term thermal response of precast high-strength concrete (PHC) energy pile is relatively rare. This paper combines field experiments and numerical simulations to investigate the long-term thermal properties of a PHC energy pile in a layered foundation. The major findings obtained from the experimental and numerical studies are as follows: First, the thermophysical ground properties gradually produce an influence on the long-term temperature variation. For the soil layers with relatively higher thermal conductivity, the ground temperature near to the energy pile presents a slowly increasing trend, and the ground temperature response at a longer distance from the center of the PHC pile appears to be delayed. Second, the short- and long-term thermal performance of the PHC energy pile can be enhanced by increasing the thermal conductivity of backfill soil. When the thermal conductivities of backfill soil in the PHC pile increase from 1 to 4 W/(m K), the heat exchange amounts of energy pile can be enhanced by approximately 30%, 79%, 105%, and 122% at 1 day and 20%, 47%, 59%, and 66% at 90 days compared with the backfill water used in the site. However, the influence of specific heat capacity of the backfill soil in the PHC pile on the short-term or long-term thermal response can be ignored. Furthermore, the variation of the initial ground temperature is also an important factor to affect the short-and-long-term heat transfer capacity and ground temperature variation. Finally, the thermal conductivity of the ground has a significant effect on the long-term thermal response compared with the short-term condition, and the heat exchange rates rise by about 5% and 9% at 1 day and 21% and 37% at 90 days as the thermal conductivities of the ground increase by 0.5 and 1 W/(m K), respectively.


2021 ◽  
Vol 27 ◽  
pp. 101313
Author(s):  
Di Wu ◽  
Gangqiang Kong ◽  
Hanlong Liu ◽  
Qiang Jiang ◽  
Qing Yang ◽  
...  

2010 ◽  
Vol 14 (9) ◽  
pp. 2683-2696 ◽  
Author(s):  
Monique de Moel ◽  
Peter M. Bach ◽  
Abdelmalek Bouazza ◽  
Rao M. Singh ◽  
JingLiang O. Sun

2017 ◽  
Vol 31 (3) ◽  
pp. 06017001 ◽  
Author(s):  
Yonghui Chen ◽  
Jie Xu ◽  
Hang Li ◽  
Long Chen ◽  
Charles W. W. Ng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document