A comparative study of the anisotropic dynamic and static elastic moduli of unconventional reservoir shales: Implication for geomechanical investigations
We obtained the complete set of dynamic elastic stiffnesses for a suite of “shales” representative of unconventional reservoirs from simultaneously measured P- and S-wave speeds on single prisms specially machined from cores. Static linear compressibilities were concurrently obtained using strain gauges attached to the prism. Regardless of being from static or dynamic measurements, the pressure sensitivity varies strongly with the direction of measurement. Furthermore, the static and dynamic linear compressibilities measured parallel to the bedding are nearly the same whereas those perpendicular to the bedding can differ by as much as 100%. Compliant cracklike porosity, seen in scanning electron microscope images, controls the elastic properties measured perpendicular to the rock’s bedding plane and results in highly nonlinear pressure sensitivity. In contrast, those properties measured parallel to the bedding are nearly insensitive to stress. This anisotropy to the pressure dependency of the strains and moduli further complicates the study of the overall anisotropy of such rocks. This horizontal stress insensitivity has implications for the use of advanced sonic logging techniques for stress direction indication. Finally, we tested the validity of the practice of estimating the fracture pressure gradient (i.e., horizontal stress) using our observed elastic engineering moduli and found that ignoring anisotropy would lead to underestimates of the minimum stress by as much as 90%. Although one could ostensibly obtain better values or the minimum stress if the rock anisotropy is included, we would hope that these results will instead discourage this method of estimating horizontal stress in favor of more reliable techniques.