scholarly journals Breast and prostate cancer risk: the interplay of polygenic risk, rare pathogenic germline variants, and family history

Author(s):  
Emadeldin Hassanin ◽  
Patrick May ◽  
Rana Aldisi ◽  
Isabel Spier ◽  
Andreas J. Forstner ◽  
...  
2021 ◽  
Author(s):  
Emadeldin Hassanin ◽  
Patrick May ◽  
Rana Aldisi ◽  
Isabel Spier ◽  
Andreas J. Forstner ◽  
...  

Purpose Investigate to which extent polygenic risk scores (PRS), high-impact monogenic variants, and family history affect breast and prostate cancer risk by assessing cancer prevalence and cancer cumulative lifetime incidence. Methods 200,643 individuals from the UK Biobank were stratified as follows: 1. carriers or non-carriers of high impact constitutive, monogenic variants in cancer susceptibility genes, 2. high or non-high PRS (90th percentile threshold), 3. with or without a family history of cancer. Multivariable logistic regression was used to compare the odds ratio (OR) across the different groups while Cox proportional hazards models were used to compute the cumulative incidence through life. Results Breast and prostate cancer cumulative incidence by age 70 is 7% and 5% for non-carriers with non-high PRS and reaches 37% and 32% among carriers of high-impact variants in cancer susceptibility genes with high PRS. The additional presence of family history is associated with a further increase of the risk of developing cancer reaching an OR of 14 and 21 for breast and prostate cancer, respectively. Conclusion High PRS confers a cancer risk comparable to high-impact monogenic variants. Family history, monogenic variants, and PRS contribute additively to breast and prostate cancer risk.


2011 ◽  
pp. n/a-n/a ◽  
Author(s):  
Mitchell J. Machiela ◽  
Chia-Yen Chen ◽  
Constance Chen ◽  
Stephen J. Chanock ◽  
David J. Hunter ◽  
...  

2018 ◽  
Vol 126 (4) ◽  
pp. 047011 ◽  
Author(s):  
Ariadna Garcia-Saenz ◽  
Alejandro Sánchez de Miguel ◽  
Ana Espinosa ◽  
Antonia Valentin ◽  
Núria Aragonés ◽  
...  

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Johanna Tolksdorf ◽  
Michael W. Kattan ◽  
Stephen A. Boorjian ◽  
Stephen J. Freedland ◽  
Karim Saba ◽  
...  

Abstract Background Online clinical risk prediction tools built on data from multiple cohorts are increasingly being utilized for contemporary doctor-patient decision-making and validation. This report outlines a comprehensive data science strategy for building such tools with application to the Prostate Biopsy Collaborative Group prostate cancer risk prediction tool. Methods We created models for high-grade prostate cancer risk using six established risk factors. The data comprised 8492 prostate biopsies collected from ten institutions, 2 in Europe and 8 across North America. We calculated area under the receiver operating characteristic curve (AUC) for discrimination, the Hosmer-Lemeshow test statistic (HLS) for calibration and the clinical net benefit at risk threshold 15%. We implemented several internal cross-validation schemes to assess the influence of modeling method and individual cohort on validation performance. Results High-grade disease prevalence ranged from 18% in Zurich (1863 biopsies) to 39% in UT Health San Antonio (899 biopsies). Visualization revealed outliers in terms of risk factors, including San Juan VA (51% abnormal digital rectal exam), Durham VA (63% African American), and Zurich (2.8% family history). Exclusion of any cohort did not significantly affect the AUC or HLS, nor did the choice of prediction model (pooled, random-effects, meta-analysis). Excluding the lowest-prevalence Zurich cohort from training sets did not statistically significantly change the validation metrics for any of the individual cohorts, except for Sunnybrook, where the effect on the AUC was minimal. Therefore the final multivariable logistic model was built by pooling the data from all cohorts using logistic regression. Higher prostate-specific antigen and age, abnormal digital rectal exam, African ancestry and a family history of prostate cancer increased risk of high-grade prostate cancer, while a history of a prior negative prostate biopsy decreased risk (all p-values < 0.004). Conclusions We have outlined a multi-cohort model-building internal validation strategy for developing globally accessible and scalable risk prediction tools.


2008 ◽  
Vol 123 (5) ◽  
pp. 1154-1159 ◽  
Author(s):  
Jiyoung Ahn ◽  
Roxana Moslehi ◽  
Stephanie J. Weinstein ◽  
Kirk Snyder ◽  
Jarmo Virtamo ◽  
...  

BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Zheng-Ju Ren ◽  
De-Hong Cao ◽  
Qin Zhang ◽  
Peng-Wei Ren ◽  
Liang-Ren Liu ◽  
...  

2017 ◽  
Vol 35 (20) ◽  
pp. 2240-2250 ◽  
Author(s):  
Julie Lecarpentier ◽  
Valentina Silvestri ◽  
Karoline B. Kuchenbaecker ◽  
Daniel Barrowdale ◽  
Joe Dennis ◽  
...  

Purpose BRCA1/2 mutations increase the risk of breast and prostate cancer in men. Common genetic variants modify cancer risks for female carriers of BRCA1/2 mutations. We investigated—for the first time to our knowledge—associations of common genetic variants with breast and prostate cancer risks for male carriers of BRCA1/ 2 mutations and implications for cancer risk prediction. Materials and Methods We genotyped 1,802 male carriers of BRCA1/2 mutations from the Consortium of Investigators of Modifiers of BRCA1/2 by using the custom Illumina OncoArray. We investigated the combined effects of established breast and prostate cancer susceptibility variants on cancer risks for male carriers of BRCA1/2 mutations by constructing weighted polygenic risk scores (PRSs) using published effect estimates as weights. Results In male carriers of BRCA1/2 mutations, PRS that was based on 88 female breast cancer susceptibility variants was associated with breast cancer risk (odds ratio per standard deviation of PRS, 1.36; 95% CI, 1.19 to 1.56; P = 8.6 × 10−6). Similarly, PRS that was based on 103 prostate cancer susceptibility variants was associated with prostate cancer risk (odds ratio per SD of PRS, 1.56; 95% CI, 1.35 to 1.81; P = 3.2 × 10−9). Large differences in absolute cancer risks were observed at the extremes of the PRS distribution. For example, prostate cancer risk by age 80 years at the 5th and 95th percentiles of the PRS varies from 7% to 26% for carriers of BRCA1 mutations and from 19% to 61% for carriers of BRCA2 mutations, respectively. Conclusion PRSs may provide informative cancer risk stratification for male carriers of BRCA1/2 mutations that might enable these men and their physicians to make informed decisions on the type and timing of breast and prostate cancer risk management.


2016 ◽  
Author(s):  
Lauren E. Barber ◽  
Travis A. Gerke ◽  
Sarah C. Markt ◽  
Giovanni Parmigiani ◽  
Lorelei A. Mucci

Sign in / Sign up

Export Citation Format

Share Document