Stepwise decreases of the Huanghe (Yellow River) sediment load (1950–2005): Impacts of climate change and human activities

2007 ◽  
Vol 57 (3-4) ◽  
pp. 331-354 ◽  
Author(s):  
Houjie Wang ◽  
Zuosheng Yang ◽  
Yoshiki Saito ◽  
J. Paul Liu ◽  
Xiaoxia Sun ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Haifang Yao ◽  
Changxing Shi ◽  
Wenwei Shao ◽  
Jianbin Bai ◽  
Hui Yang

Using data of temperature, wind, precipitation, water discharge, and sediment load, the changes in runoff and sediment load of the Xiliugou basin in the upper Yellow River were investigated and the contributions of climate change and human activities to these changes were quantitatively estimated. Results show that the runoff and sediment load of the stream declined gradually in 1960–2012. According to the abrupt change point detected, the runoff and sediment series were divided into two periods: 1960–1998 and 1999–2012. The reductions of runoff and sediment load in 1999–2012 were found to be related to climate change and human activities, and the latter played a dominant role with a contribution of about 68% and 75%, respectively. The effects of rainfall intensity should be considered to avoid overestimating or underestimating the contributions of rainfall changes to the variations of runoff and sediment load in the semiarid region. An inspection of changes in water discharge and sediment regime indicated that the frequency of discharge between 0 and 5 m3/s increased while that between 5 and 1000 m3/s decreased in 2006–2012. This phenomenon can be attributed principally to the soil and water conservation practices.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1237 ◽  
Author(s):  
Caihong Hu ◽  
Li Zhang ◽  
Qiang Wu ◽  
Shan-e-hyder Soomro ◽  
Shengqi Jian

Runoff reduction in most river basins in China has become a hotpot in recent years. The Gushanchuan river, a primary tributary of the middle Yellow river, Northern China, showed a significant downward trend in the last century. Little is known regarding the relative contributions of changing environment to the observed hydrological trends and response on the runoff generation process in its watershed. On the basis of observed hydrological and meteorological data from 1965–2010, the Mann-Kendall trend test and climate elasticity method were used to distinguish the effects of climate change and human activities on runoff in the Gushanchuan basin. The results indicate that the runoff in the Gushanchuan Basin has experienced significant declines as large as 77% from 1965 to 2010, and a mutation point occurred around 1997; the contribution rate of climate change to runoff change is 12.9–15.1%, and the contribution rate of human activities to runoff change is 84.9–87.1%. Then we divided long-term data sequence into two stages around the mutation point, and analyzed runoff generation mechanisms based on land use and cover changes (LUCC). We found that the floods in the Gushanchuan Basin were still dominated by Excess-infiltration runoff, but the proportion in 1965–1997 and 1998–2010 decreased gradually (68.46% and 45.83% in turn). The proportion of Excess-storage runoff and Mixed runoff has increased, which means that the runoff is made up of more runoff components. The variation law of the LUCC indicates that the forest area increased by 49.61%, the confluence time increased by 50.42%, and the water storage capacity of the watershed increased by 30.35%.


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 521
Author(s):  
Qinghe Zhao ◽  
Shengyan Ding ◽  
Xiaoyu Ji ◽  
Zhendong Hong ◽  
Mengwen Lu ◽  
...  

Human activities are increasingly recognized as having a critical influence on hydrological processes under the warming of the climate, particularly for dam-regulated rivers. To ensure the sustainable management of water resources, it is important to evaluate how dam construction may affect surface runoff. In this study, using Mann–Kendall tests, the double mass curve method, and the Budyko-based elasticity method, the effects of climate change and human activities on annual and seasonal runoff were quantified for the Yellow River basin from 1961–2018; additionally, effects on runoff were assessed after the construction of the Xiaolangdi Dam (XLD, started operation in 2001) on the Yellow River. Both annual and seasonal runoff decreased over time (p < 0.01), due to the combined effects of climate change and human activities. Abrupt changes in annual, flood season, and non-flood season runoff occurred in 1986, 1989, and 1986, respectively. However, no abrupt changes were seen after the construction of the XLD. Human activities accounted for much of the reduction in runoff, approximately 75–72% annually, 81–86% for the flood season, and 86–90% for the non-flood season. Climate change approximately accounted for the remainder: 18–25% (annually), 14–19% (flood season), and 10–14% (non-flood season). The XLD construction mitigated runoff increases induced by heightened precipitation and reduced potential evapotranspiration during the post-dam period; the XLD accounted for approximately 52% of the runoff reduction both annually and in the non-flood season, and accounted for approximately −32% of the runoff increase in the flood season. In conclusion, this study provides a basic understanding of how dam construction contributes to runoff changes in the context of climate change; this information will be beneficial for the sustainable management of water resources in regulated rivers.


Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1085 ◽  
Author(s):  
Shanshan Guo ◽  
Zhengru Zhu ◽  
Leting Lyu

Climate change and human activities are the major factors affecting runoff and sediment load. We analyzed the inter-annual variation trend of the average rainfall, air temperature, runoff and sediment load in the Xihe River Basin from 1969–2015. Pettitt’s test and the Soil and Water Assessment Tool (SWAT) model were used to detect sudden change in hydro-meteorological variables and simulate the basin hydrological cycle, respectively. According to the simulation results, we explored spatial distribution of soil erosion in the watershed by utilizing ArcGIS10.0, analyzed the average erosion modulus by different type of land use, and quantified the contributions of climate change and human activities to runoff and sediment load in changes. The results showed that: (1) From 1969–2015, both rainfall and air temperature increased, and air temperature increased significantly (p < 0.01) at 0.326 °C/10 a (annual). Runoff and sediment load decreased, and sediment load decreased significantly (p < 0.01) at 1.63 × 105 t/10 a. In 1988, air temperature experienced a sudden increase and sediment load decreased. (2) For runoff, R2 and Nash and Sutcliffe efficiency coefficient (Ens) were 0.92 and 0.91 during the calibration period and 0.90 and 0.87 during the validation period, for sediment load, R2 and Ens were 0.60 and 0.55 during the calibration period and 0.70 and 0.69 during the validation period, meeting the model’s applicability requirements. (3) Soil erosion was worse in the upper basin than other regions, and highest in cultivated land. Climate change exacerbates runoff and sediment load with overall contribution to the total change of −26.54% and −8.8%, respectively. Human activities decreased runoff and sediment load with overall contribution to the total change of 126.54% and 108.8% respectively. Runoff and sediment load change in the Xihe River Basin are largely caused by human activities.


2022 ◽  
Vol 9 ◽  
Author(s):  
Zeyu Zhang ◽  
Junrui Chai ◽  
Zhanbin Li ◽  
Li Chen ◽  
Kunxia Yu ◽  
...  

With years of vegetation restoration and check dam construction on the Loess Plateau, the sediment load of the middle reaches of the Yellow River have decreased sharply; however, the effects of check dam on this decrease of sediment load with such extensive vegetation restoration remains unclear. In order to further clarify the effects of check dam on sediment load reduction under vegetation restoration, we calculated vegetation coverage and check dam index based on multi-source remote sensing data, and calculated sediment reduction rate caused by human activities by Mann-Kendall statistical test and double cumulative curve, then established regression equations incorporating the check dam index and the sediment reduction rate using data from different geomorphic regions with different vegetation coverages. The results showed that sediment load in the Hekou-Longmen region and its 17 tributaries decreased significantly every year, and the change in sediment load could be divided into 3 typical periods: the base period (P1), the period mainly impacted by check dam construction (P2) and the period with comprehensive impact of check dam construction and vegetation restoration (P3). Compared with sediment load of the tributaries during P1, the sediment load decreased by 60.96% during P2 and by 91.76% during P3. Compared with the contribution of human activities to the reduction in sediment load in P2, the contribution of human activities in P3 increased significantly, while that of precipitation decreased slightly. The sediment reduction effect of check dams is greater in basins with low vegetation coverage than in basins with high vegetation coverage. There are differences in sediment reduction effect of vegetation restorations in different geomorphic regions, and the effect of vegetation restoration alone have certain upper limits. Such as, the upper limit of sediment reduction rate of vegetation restoration for rivers flowing through the sandstorm region is 47.86%. Hence, only combined the construction of check dam with vegetation restoration can it achieve more significant sediment reduction benefit and control soil erosion more effectively.


Sign in / Sign up

Export Citation Format

Share Document