Summer precipitation projections over northwestern South America from CMIP5 models

2015 ◽  
Vol 131 ◽  
pp. 11-23 ◽  
Author(s):  
Reiner Palomino-Lemus ◽  
Samir Córdoba-Machado ◽  
Sonia Raquel Gámiz-Fortis ◽  
Yolanda Castro-Díez ◽  
María Jesús Esteban-Parra
2021 ◽  
Author(s):  
Sabina Abba-Omar ◽  
Francesca Raffaele ◽  
Erika Coppola ◽  
Daniela Jacob ◽  
Claas Teichmann ◽  
...  

<p>The impact of climate change on precipitation over Southern Africa is of particular interest due to its possible devastating societal impacts. To add to this, simulating precipitation is challenging and models tend to show strong biases over this region, especially during the Austral Summer (DJF) months. One of the reasons for this is the mis-representation of the Angolan Low (AL) and its influence on Southern Africa’s Summer precipitation in the models. Therefore, this study aims to explore and compare different models’ ability to capture the AL and its link to precipitation variability as well as consider the impact climate change may have on this link. We also explore how the interaction between ENSO, another important mode of variability for precipitation, and the Angolan Low, impact precipitation, how the models simulate this and whether this could change in the future under climate change. </p><p>We computed the position and strength of the AL in reanalysis data and compared these results to three different model ensembles with varying resolutions. Namely, the CORDEX-CORE ensemble (CCORE), a new phase of CORDEX simulations with higher resolutions (0.22 degrees), the lower resolution (0.44 degrees) CORDEX-phase 1 ensemble (C44) and the CMIP5 models that drive the two RCM ensembles. We also used Self Organizing Maps to group DJF yearly anomaly patterns and identify which combination of ENSO and AL strength scenarios are responsible for particularly wet or dry conditions. Regression analysis was performed to analyze the relationships between precipitation and the AL and ENSO. This analysis was repeated for near (2041-2060) and far (2080-2099) future climate and compared with the present to understand how the strength of the AL, and its connection to precipitation variability and ENSO, changes in the future. </p><p>We found that, in line with previous studies, models with stronger AL tend to produce more rainfall. CCORE tends to simulate a stronger AL than C44 and therefore, higher precipitation biases. However, the regression analysis shows us that CCORE is able to capture the relationship between precipitation and the AL strength variability as well as ENSO better than the other ensembles. We found that generally dry rainfall patterns over Southern Africa are associated with a weak AL and El Nino event whereas wet rainfall patterns occur during a strong AL and La Nina year. While the models are able to capture this, they also tend to show more neutral ENSO conditions associated with these wet and dry patterns which possibly indicates less of a connection between AL strength and ENSO than seen in the observed results. Analysis of the future results indicates that the AL weakens, this is shown across all the ensembles and could be a contributing factor to some of the drying seen. These results have applications in understanding and improving model representation of precipitation over Southern Africa as well as providing some insight into the impact of climate change on precipitation and some of its associated dynamics over this region.</p>


2017 ◽  
Vol 12 (12) ◽  
pp. 124011 ◽  
Author(s):  
Reiner Palomino-Lemus ◽  
Samir Córdoba-Machado ◽  
Sonia Raquel Gámiz-Fortis ◽  
Yolanda Castro-Díez ◽  
María Jesús Esteban-Parra

2017 ◽  
Vol 51 (5-6) ◽  
pp. 1773-1792 ◽  
Author(s):  
Reiner Palomino-Lemus ◽  
Samir Córdoba-Machado ◽  
Sonia Raquel Gámiz-Fortis ◽  
Yolanda Castro-Díez ◽  
María Jesús Esteban-Parra

2020 ◽  
Author(s):  
Rosmeri Porfírio da Rocha ◽  
Michelle Simões Reboita ◽  
Natália Machado Crespo ◽  
Eduardo Marcos de Jesus ◽  
Andressa Andrade Cardoso ◽  
...  

<p>Cyclones developing in eastern coast of South America impact weather and control the climate in most parts of the continent as well as over the South Atlantic Ocean. Current knowledge of these cyclones shows that they can have different thermal and dynamic structures along their lifecycles being classified as tropical, subtropical or extratropical. Cyclones occurring over the sea generate intense near-surface winds with major impacts on human activities and ecosystems. Given this context, we are producing fine resolution (~25 km) dynamic downscaling with RegCM4 to investigate the climatic trends of the different phases of cyclones over the southwest South Atlantic Ocean. Special emphasis will be given on the contribution of subtropical cyclones causing extreme events (rainfall and wind) in eastern Brazil. The simulations cover South America and wider area of South Atlantic Ocean. For evaluation simulation RegCM4 is forced by ERA-Interim reanalysis, while for the projections by CMIP5 models under RCP4.5 and RCP8.5 scenarios. Cyclones are tracked using an algorithm based on cyclonic relative vorticity. In this study we present the climatology of all cyclones provided by the ERA-Interim evaluation simulation in the period 1979-2015. Basically, we discuss the ability of fine resolution simulation in reproducing the main cyclogenetic areas over the continent, seasonality and interannual variability of cyclones. Comparisons with previous simulations allow discussing the impact of fine resolution downscaling on the climatological features of all cyclones and their classification in South America domain.    </p>


2016 ◽  
Vol 29 (9) ◽  
pp. 3317-3337 ◽  
Author(s):  
Nagio Hirota ◽  
Yukari N. Takayabu ◽  
Atsushi Hamada

Abstract Reproducibility of summer precipitation over northern Eurasia in climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) is evaluated in comparison with several observational and reanalysis datasets. All CMIP5 models under- and overestimate precipitation over western and eastern Eurasia, respectively, and the reproducibility measured using the Taylor skill score is largely determined by the severity of these west–east precipitation biases. The following are the two possible causes for the precipitation biases: very little cloud cover and very strong local evaporation–precipitation coupling. The models underestimate cloud cover over Eurasia, allowing too much sunshine and leading to a warm bias at the surface. The associated cyclonic circulation biases in the lower troposphere weaken the modeled moisture transport from the Atlantic to western Eurasia and enhance the northward moisture flux along the eastern coast. Once the dry west and wet east biases appear in the models, they become amplified because of stronger evaporation–precipitation coupling. The CMIP5 models reproduce precipitation events well over a time scale of several days, including the associated low pressure systems and local convection. However, the modeled precipitation events are relatively weaker over western Eurasia and stronger over eastern Eurasia compared to the observations, and these are consistent with the biases found in the seasonal average fields.


2009 ◽  
Vol 137 (9) ◽  
pp. 2931-2954 ◽  
Author(s):  
Jia-Lin Lin ◽  
Toshiaki Shinoda ◽  
Brant Liebmann ◽  
Taotao Qian ◽  
Weiqing Han ◽  
...  

Abstract This study evaluates the intraseasonal variability associated with summer precipitation over South America in 14 coupled general circulation models (GCMs) participating in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). Eight years of each model’s twentieth-century climate simulation are analyzed. Two dominant intraseasonal bands associated with summer precipitation over South America are focused on: the 40- and the 22-day band. The results show that in the southern summer (November–April), most of the models underestimate seasonal mean precipitation over central-east Brazil, northeast Brazil, and the South Atlantic convergence zone (SACZ), while the Atlantic intertropical convergence zone (ITCZ) is shifted southward of its observed position. Most of the models capture both the 40- and 22-day band around Uruguay, but with less frequent active episodes than observed. The models also tend to underestimate the total intraseasonal (10–90 day), the 40-, and the 22-day band variances. For the 40-day band, 10 of the 14 models simulate to some extent the 3-cell pattern around South America, and 6 models reproduce its teleconnection with precipitation in the south-central Pacific, but only 1 model simulates the teleconnection with the MJO in the equatorial Pacific, and only 3 models capture its northward propagation from 50° to 32°S. For the 7 models with three-dimensional data available, only 1 model reproduces well the deep baroclinic vertical structure of the 40-day band. For the 22-day band, only 6 of the 14 models capture its northward propagation from the SACZ to the Atlantic ITCZ. It is found that models with some form of moisture convective trigger tend to produce large variances for the intraseasonal bands.


Sign in / Sign up

Export Citation Format

Share Document