Reassessing Early Triassic wrinkle structures from moderate-high latitudes: An updated interpretation of metazoan colonization in matground ecosystems after the Permian-Triassic mass extinction

2021 ◽  
pp. 103590
Author(s):  
Xueqian Feng
Paleobiology ◽  
2011 ◽  
Vol 37 (3) ◽  
pp. 409-425 ◽  
Author(s):  
Jonathan L. Payne ◽  
Mindi Summers ◽  
Brianna L. Rego ◽  
Demir Altiner ◽  
Jiayong Wei ◽  
...  

Delayed biotic recovery from the end-Permian mass extinction has long been interpreted to result from environmental inhibition. Recently, evidence of more rapid recovery has begun to emerge, suggesting the role of environmental inhibition was previously overestimated. However, there have been few high-resolution taxonomic and ecological studies spanning the full Early and Middle Triassic recovery interval, leaving the precise pattern of recovery and underlying mechanisms poorly constrained. In this study, we document Early and Middle Triassic trends in taxonomic diversity, assemblage evenness, and size distribution of benthic foraminifers on an exceptionally exposed carbonate platform in south China. We observe gradual increases in all metrics through Early Triassic and earliest Middle Triassic time, with stable values reached early in the Anisian. There is little support in our data set for a substantial Early Triassic lag interval during the recovery of foraminifers or for a stepwise recovery pattern. The recovery pattern of foraminifers on the GBG corresponds well with available global data for this taxon and appears to parallel that of many benthic invertebrate clades. Early Triassic diversity increase in foraminifers was more gradual than in ammonoids and conodonts. However, foraminifers continued to increase in diversity, size, and evenness into Middle Triassic time, whereas diversity of ammonoids and conodonts declined. These contrasts suggest decoupling of recovery between benthic and pelagic environments; it is unclear whether these discrepancies reflect inherent contrasts in their evolutionary dynamics or the differential impact of Early Triassic ocean anoxia or associated environmental parameters on benthic ecosystems.


Paleobiology ◽  
2007 ◽  
Vol 33 (3) ◽  
pp. 397-413 ◽  
Author(s):  
Margaret L. Fraiser ◽  
David J. Bottjer

AbstractThe end-Permian mass extinction is commonly portrayed not only as a massive biodiversity crisis but also as the time when marine benthic faunas changed from the Paleozoic Fauna, dominated by rhynchonelliform brachiopod taxa, to the Modern Fauna, dominated by gastropod and bivalve taxa. After the end-Permian mass extinction, scenarios involving the Mesozoic Marine Revolution portray a steady increase in numerical dominance by these benthic molluscs as largely due to the evolutionary effects of an “arms race.” We report here a new global paleoecological database from study of shell beds that shows a dramatic geologically sudden earliest Triassic takeover by bivalves as numerical dominants in level-bottom benthic marine communities, which continued through the Early Triassic. Three bivalve genera were responsible for this switch, none of which has any particular morphological features to distinguish it from many typical Paleozoic bivalve genera. The numerical success of these Early Triassic bivalves cannot be attributed to any of the well-known morphological evolutionary innovations of post-Paleozoic bivalves that characterize the Mesozoic Marine Revolution. Rather, their ability to mount this takeover most likely was due to the large extinction of rhynchonelliform brachiopods during the end-Permian mass extinction and aided by their environmental distribution and physiological characteristics that enabled them to thrive during periods of oceanic and atmospheric stress during the Permian/Triassic transition.


2021 ◽  
pp. 1-11
Author(s):  
Martín D. Ezcurra ◽  
Saswati Bandyopadhyay ◽  
Kasturi Sen

Abstract The fossil record of Early Triassic diapsids is very important to understand how the end-Permian mass extinction affected ecosystems and the patterns and processes involved in the subsequent biotic recovery. Vertebrate fossil assemblages of continental deposits in current-day South Africa, China, and Russia are the best source of information of this clade during the aftermath of the extinction event. Although considerably less sampled, the Induan continental rocks of the Panchet Formation of the Damodar Basin (eastern India) have also yielded a relatively diverse vertebrate assemblage composed of fishes, temnospondyls, synapsids, and a single proterosuchid taxon. Here, we report on a small isolated diapsid partial ilium (ISIR 1132) from the upper Panchet Formation. This specimen has a distinct morphology compared to other tetrapods that we know, including a shallow emargination on the dorsal margin of the anterior portion of the iliac blade, and ratio between height of iliac blade versus maximum height of iliac acetabulum at level of the dorsalmost extension of supraacetabular crest ≤0.45. Comparisons and a quantitative phylogenetic analysis found ISIR 1132 as a non-archosauromorph neodiapsid. This new specimen expands the reptile diversity in the Panchet Formation as well as for the rest of Gondwana, where Early Triassic non-archosauromorph neodiapsid species are extremely scarce.


1992 ◽  
Vol 6 ◽  
pp. 261-261
Author(s):  
Jennifer K. Schubert ◽  
David J. Bottjer

The Permian/Triassic mass extinction, the most devastating biotic crisis of the Phanerozoic, has aroused considerable scientific interest. However, because research has focused primarily on understanding the magnitude of diversity reduction and causal mechanisms, the nature and timing of biotic recovery in the Early Triassic are still poorly understood. Marine limestones in the Lower Triassic Moenkopi Formation, which disconformably overlies the Upper Permian of southeastern Nevada and southern Utah, provide a rare opportunity to study the aftermath of the mass extinction in shallow water carbonate environments.Two contemporaneous members of the Moenkopi record the first marine incursion from the northwest in the Early Triassic (Smithian), the very sparsely fossiliferous marginal marine Schnabkaib Member in Nevada and southwest Utah, and the Sinbad Limestone in central-southern Utah, a marine unit dominated by amalgamated and condensed fossil-rich beds. The Virgin Limestone member was deposited during a subsequent (Spathian) Early Triassic sea level rise, about 4-5 Ma following the Permian/Triassic boundary, and includes nearshore and inner shelf limestones characterized by fossiliferous storm beds.Because the fossiliferous limestones of the Smithian Sinbad and the Spathian Virgin were deposited in similar shallow subtidal settings, they provide an opportunity to compare and contrast the status of biotic rebound at different points along an Early Triassic “time transect.” Analysis of bulk samples reveals that the older Sinbad and younger Virgin are similar in each possessing 2-3 different benthic marine paleocommunities of low within-habitat species richness. There are, however, several important differences between the Sinbad and Virgin faunas. The richly fossiliferous Sinbad assemblages are primarily molluscan, composed of approximately 2-8 species of bivalves, which may or may not be accompanied by ammonoids and 0-11 species of gastropods. Small spines, possibly belonging to an echinoid, are numerous in some samples. Although bivalves are also abundant in Virgin Limestone assemblages, fossils of other higher taxa are well-represented, including abundant crinoid ossicles, common brachiopods, echinoid spines and plates, and rare ammonoids and gastropods. Sinbad faunas also appear to lack epibionts and borers, while they are present but not abundant in the Virgin.The addition from Sinbad to Virgin times of groups other than molluscs, with different life habits and strategies, most likely led to an increase in spatial partitioning and resource utilization, in particular the development of epifaunal tiering with the appearance of stalked crinoids in the Virgin. This pattern of earliest Triassic community dominance by molluscs followed by later more “Paleozoic-like” communities has been observed in other regions. Earliest Triassic paucity of epibionts and borers indicates significant reduction in the biotic component of taphonomic processes, including taphonomic feedback, when compared with other time intervals. Data from these Early Triassic assemblages thus indicate the initiation of both an evolutionary and an ecological rebound between Sinbad (Smithian) and Virgin (Spathian) times.


2019 ◽  
Vol 513 ◽  
pp. 144-155 ◽  
Author(s):  
Xiangdong Wang ◽  
Peter A. Cawood ◽  
He Zhao ◽  
Laishi Zhao ◽  
Stephen E. Grasby ◽  
...  

2020 ◽  
Vol 117 (30) ◽  
pp. 17578-17583 ◽  
Author(s):  
Haijun Song ◽  
Shan Huang ◽  
Enhao Jia ◽  
Xu Dai ◽  
Paul B. Wignall ◽  
...  

The latitudinal diversity gradient (LDG) is recognized as one of the most pervasive, global patterns of present-day biodiversity. However, the controlling mechanisms have proved difficult to identify because many potential drivers covary in space. The geological record presents a unique opportunity for understanding the mechanisms which drive the LDG by providing a direct window to deep-time biogeographic dynamics. Here we used a comprehensive database containing 52,318 occurrences of marine fossils to show that the shape of the LDG changed greatly during the Permian–Triassic mass extinction from showing a significant tropical peak to a flattened LDG. The flat LDG lasted for the entire Early Triassic (∼5 My) before reverting to a modern-like shape in the Middle Triassic. The environmental extremes that prevailed globally, especially the dramatic warming, likely induced selective extinction in low latitudes and accumulation of diversity in high latitudes through origination and poleward migration, which combined together account for the flat LDG of the Early Triassic.


2019 ◽  
Vol 15 (3) ◽  
pp. 20180902 ◽  
Author(s):  
Ashley A. Dineen ◽  
Peter D. Roopnarine ◽  
Margaret L. Fraiser

The Permo-Triassic mass extinction (PTME) is often implicated in the transition from the Paleozoic evolutionary fauna (PEF) to the modern evolutionary fauna (MEF). However, the exact timing and details of this progression are unknown, especially regarding the vacating and filling of functional ecological space after the PTME. Here, we quantify the functional diversity of middle Permian and Early Triassic marine paleocommunities in the western US to determine functional re-organization in the aftermath of the PTME. Results indicate that while the PTME was selective in nature, many new Triassic taxa either re-filled functional roles of extinct Permian taxa or performed the same functional roles as Permian survivors. Despite this functional overlap, Permian survivors and new Triassic taxa differed significantly in their relative abundances within those overlapping functions. This shift in numerical emphasis, driven by an increase in abundance towards more MEF-style traits, may represent a first step in the transition between the PEF and MEF. We therefore suggest that the extreme impact of the PTME had significant and permanent re-organizational effects on the intrinsic structure of marine ecosystems. Early Triassic ecosystems likely bridged the gap between the Paleozoic and modern evolutionary faunas, as newly originated Triassic taxa shared ecospace with Permian survivors, but shifted functional emphasis.


Sign in / Sign up

Export Citation Format

Share Document