The role of subduction erosion in the generation of Andean and other convergent plate boundary arc magmas, the continental crust and mantle

2020 ◽  
Vol 88 ◽  
pp. 220-249
Author(s):  
Charles R. Stern
2020 ◽  
Author(s):  
Oliver Jagoutz ◽  
Benjamin Klein ◽  
Max W Schmidt ◽  
Nico Küter

<p>When subduction initiated and contributed to formation of Continental crust is uncertain. A crucial difference between subduction zones magma and e.g. plume related magmatism is the role of H2O in the magma formed. Subduction zones magma are frequently wet and follow a liquid line of descent (LLD) that differs from dry plume related magmas. We developed a qualitative hygrometer based on major elements that allow to distinguish between LLD formed at water saturated condition from those that formed at dry conditions. While arc magmas can by dry at times, plume related magmas are generally dry. So wet LLD are a hall mark of subduction. In this talk we will compare the modern arc record with the Archean rock record to investigate if Archean rocks formed due to a wet or dry LLD. </p>


Author(s):  
Anne-Aziliz Pelleter ◽  
Gaëlle Prouteau ◽  
Bruno Scaillet

Abstract We performed phase equilibrium experiments on a natural Ca-poor pelite at 3 GPa, 750-1000 °C, under moderately oxidizing conditions, simulating the partial melting of such lithologies in subduction zones. Experiments investigated the effect of sulphur addition on phase equilibria and compositions, with S contents of up to ∼ 2.2 wt. %. Run products were characterized for their major and trace element contents, in order to shed light on the role of sulphur on the trace element patterns of melts produced by partial melting of oceanic Ca-poor sediments. Results show that sulphur addition leads to the replacement of phengite by biotite along with the progressive consumption of garnet, which is replaced by an orthopyroxene-kyanite assemblage at the highest sulphur content investigated. All Fe-Mg silicate phases produced with sulphur, including melt, have higher MgO/(MgO+FeO) ratios (relative to S-free/poor conditions), owing to Fe being primarily locked up by sulphide in the investigated redox range. Secular infiltration of the mantle wedge by such MgO and K2O-rich melts may have contributed to the Mg and K-rich character of the modern continental crust. Addition of sulphur does not affect significantly the stability of the main accessory phases controlling the behaviour of trace elements (monazite, rutile and zircon), although our results suggest that monazite solubility is sensitive to S content at the conditions investigated. The low temperature (∼ 800 °C) S-bearing and Ca-poor sediment sourced slab melts show Th and La abundances, Th/La systematics and HFSE signatures in agreement with the characteristics of sediment-rich arc magmas. Because high S contents diminish phengite and garnet stabilities, S-rich and Ca-poor sediment sourced slab melts have higher contents of Rb, B, Li (to a lesser extent), and HREE. The highest ratios of La/Yb are observed in sulphur-poor runs (with a high proportion of garnet, which retains HREE) and beyond the monazite out curve (which retains LREE). Sulphides appear to be relatively Pb-poor and impart high Pb/Ce ratio to coexisting melts, even at high S content. Overall, our results show that Phanerozoic arc magmas from high sediment flux margins owe their geochemical signature to the subduction of terrigenous, sometimes S-rich, sediments. In contrast, subduction of such lithologies during Archean appears unlikely or unrecorded.


Author(s):  
Clark M. Johnson ◽  
Steven B. Shirey ◽  
Karin M. Barovich

ABSTRACT:The Lu-Hf and Re-Os isotope systems have been applied sparsely to elucidate the origin of granites, intracrustal processes and the evolution of the continental crust. The presence or absence of garnet as a residual phase during partial melting will strongly influence Lu/Hf partitioning, making the Lu–Hf isotope system exceptionally sensitive to evaluating the role of garnet during intracrustal differentiation processes. Mid-Proterozoic (1·1–1·5Ga ) ‘anorogenic’ granites from the western U.S.A. appear to have anomalously high εHf values, relative to their εNd values, compared with Precambrian orogenic granites from several continents. The Hf-Nd isotope variations for Precambrian orogenic granites are well explained by melting processes that are ultimately tied to garnet-bearing sources in the mantle or crust. Residual, garnet-bearing lower and middle crust will evolve to anomalously high εHf values over time and may be the most likely source for later ‘anorogenic’ magmas. When crustal and mantle rocks are viewed together in terms of Hf and Nd isotope compositions, a remarkable mass balance is apparent for at least the outer silicate earth where Precambrian orogenic continental crust is the balance to the high-εHf depleted mantle, and enriched lithospheric mantle is the balance to the low-εHf depleted mantle.Although the continental crust has been envisioned to have exceptionally high Re/Os ratios and very radiogenic Os isotope compositions, new data obtained on magnetite mineral separates suggest that some parts of the Precambrian continental crust are relatively Os-rich and non-radiogenic. It remains unclear how continental crust may obtain non-radiogenic Os isotope ratios, and these results have important implications for Re-Os isotope evolution models. In contrast, Phanerozoic batholiths and volcanic arcs that are built on young mafic lower crust may have exceptionally radiogenic Os isotope ratios. These results highlight the unique ability of Os isotopes to identify young mafic crustal components in orogenic magmas that are essentially undetectable using other isotope systems such as O, Sr, Nd and Pb.


Author(s):  
A. L. Dergachev

Tectonic evolution of the Earth is a principle global factor responsible for uneven distribution of lead and zinc reserves in geological time. Cyclic changes in productivity of lead-zinc ore-formation processes resulted from periodical amalgamation of most blocks of continental crust, formation, stabilization and final break-up of supercontinents. Many features of age spectrums of lead and zinc reserves are caused by gradual increase of volume of continental crust resulting from accretion of island arcs to ancient cratons, widening of distribution of ensialic environments of ore-formation and increasing role of continental crust in magmatic processes.


2020 ◽  
Vol 32 (6) ◽  
pp. 1347-1364
Author(s):  
Jonathan Obrist‐Farner ◽  
Andreas Eckert ◽  
Marek Locmelis ◽  
James L. Crowley ◽  
Byron Mota‐Vidaure ◽  
...  

2020 ◽  
Author(s):  
Nicolas Saspiturry ◽  
Benoit Issautier ◽  
Philippe Razin ◽  
Thierry Baudin ◽  
Riccardo Asti ◽  
...  

1981 ◽  
Vol 77 (1-2) ◽  
pp. 79-93 ◽  
Author(s):  
C. Coulon ◽  
R.S. Thorpe
Keyword(s):  

Lithos ◽  
2018 ◽  
Vol 302-303 ◽  
pp. 126-141 ◽  
Author(s):  
Zhen Li ◽  
Xuan-Ce Wang ◽  
Simon A. Wilde ◽  
Liang Liu ◽  
Wu-Xian Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document