Continental Crust formation in the Archean vs modern times

Author(s):  
Oliver Jagoutz ◽  
Benjamin Klein ◽  
Max W Schmidt ◽  
Nico Küter

<p>When subduction initiated and contributed to formation of Continental crust is uncertain. A crucial difference between subduction zones magma and e.g. plume related magmatism is the role of H2O in the magma formed. Subduction zones magma are frequently wet and follow a liquid line of descent (LLD) that differs from dry plume related magmas. We developed a qualitative hygrometer based on major elements that allow to distinguish between LLD formed at water saturated condition from those that formed at dry conditions. While arc magmas can by dry at times, plume related magmas are generally dry. So wet LLD are a hall mark of subduction. In this talk we will compare the modern arc record with the Archean rock record to investigate if Archean rocks formed due to a wet or dry LLD. </p>

Author(s):  
Anne-Aziliz Pelleter ◽  
Gaëlle Prouteau ◽  
Bruno Scaillet

Abstract We performed phase equilibrium experiments on a natural Ca-poor pelite at 3 GPa, 750-1000 °C, under moderately oxidizing conditions, simulating the partial melting of such lithologies in subduction zones. Experiments investigated the effect of sulphur addition on phase equilibria and compositions, with S contents of up to ∼ 2.2 wt. %. Run products were characterized for their major and trace element contents, in order to shed light on the role of sulphur on the trace element patterns of melts produced by partial melting of oceanic Ca-poor sediments. Results show that sulphur addition leads to the replacement of phengite by biotite along with the progressive consumption of garnet, which is replaced by an orthopyroxene-kyanite assemblage at the highest sulphur content investigated. All Fe-Mg silicate phases produced with sulphur, including melt, have higher MgO/(MgO+FeO) ratios (relative to S-free/poor conditions), owing to Fe being primarily locked up by sulphide in the investigated redox range. Secular infiltration of the mantle wedge by such MgO and K2O-rich melts may have contributed to the Mg and K-rich character of the modern continental crust. Addition of sulphur does not affect significantly the stability of the main accessory phases controlling the behaviour of trace elements (monazite, rutile and zircon), although our results suggest that monazite solubility is sensitive to S content at the conditions investigated. The low temperature (∼ 800 °C) S-bearing and Ca-poor sediment sourced slab melts show Th and La abundances, Th/La systematics and HFSE signatures in agreement with the characteristics of sediment-rich arc magmas. Because high S contents diminish phengite and garnet stabilities, S-rich and Ca-poor sediment sourced slab melts have higher contents of Rb, B, Li (to a lesser extent), and HREE. The highest ratios of La/Yb are observed in sulphur-poor runs (with a high proportion of garnet, which retains HREE) and beyond the monazite out curve (which retains LREE). Sulphides appear to be relatively Pb-poor and impart high Pb/Ce ratio to coexisting melts, even at high S content. Overall, our results show that Phanerozoic arc magmas from high sediment flux margins owe their geochemical signature to the subduction of terrigenous, sometimes S-rich, sediments. In contrast, subduction of such lithologies during Archean appears unlikely or unrecorded.


2020 ◽  
Author(s):  
Carla Tiraboschi ◽  
Carmen Sanchez-Valle

<p>In subduction zones, aqueous fluids derived from devolatilization processes of the oceanic lithosphere and its sedimentary cover, are major vectors of mass transfer from the slab to the mantle wedge and contribute to the recycling of elements and to their geochemical cycles. In this setting, assessing the mobility of redox sensitive elements, such as iron, can provide useful insights on the oxygen fugacity conditions of slab-derived fluid. However, the amount of iron mobilized by deep aqueous fluids and melts, is still poorly constrained.</p><p>We experimentally investigate the solubility of magnetite-hematite assemblages in water-saturated haplogranitic liquids, which represent the felsic melt produced by subducted eclogites. Experiments were conducted at 1 GPa and temperature ranging from 700 to 900 °C employing a piston cylinder apparatus. Single gold capsules were loaded with natural hematite, magnetite and synthetic haplogranite (Na<sub>0.56</sub>K<sub>0.38</sub>Al<sub>0.95</sub>Si<sub>5.19</sub>O<sub>12.2</sub>). Two sets of experiments were conducted: one with H<sub>2</sub>O-only fluids and the second one adding a 1.5 m H<sub>2</sub>O–NaCl solution. The capsule was kept frozen during welding to ensure no water loss. After quench, the presence of H<sub>2</sub>O in the quenched haplogranite glass was checked by Raman spectroscopy, while major elements were determined by microprobe analysis.</p><p>Preliminary results indicate that a significant amount of Fe is released from magnetite and hematite in hydrous melts, even at relatively low-pressure conditions. At 1 GPa the FeO<sub>tot</sub> quenched in the haplogranite glass ranges from 0.60 wt% at 700 °C, to 1.87 wt% at 900 °C. In the presence of NaCl, we observed an increase in the amount of iron quenched in the glass (e.g., at 800 °C from 1.04 wt% to 1.56 wt% of FeO<sub>tot</sub>). Our results suggest that hydrous melts can effectively mobilize iron even at low-pressure conditions and represent a valid agent for the cycling of iron from the subducting slab to the mantle wedge.</p>


2015 ◽  
Vol 37 ◽  
pp. 61-64
Author(s):  
Marco Scambelluri ◽  
Enrico Cannaò ◽  
Mattia Gilio ◽  
Marguerite Godard

Toxins ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 321
Author(s):  
Dobri Ivanov ◽  
Galina Yaneva ◽  
Irina Potoroko ◽  
Diana G. Ivanova

The fascinating world of lichens draws the attention of the researchers because of the numerous properties of lichens used traditionally and, in modern times, as a raw material for medicines and in the perfumery industry, for food and spices, for fodder, as dyes, and for other various purposes all over the world. However, lichens being widespread symbiotic entities between fungi and photosynthetic partners may acquire toxic features due to either the fungi, algae, or cyano-procaryotes producing toxins. By this way, several common lichens acquire toxic features. In this survey, recent data about the ecology, phytogenetics, and biology of some lichens with respect to the associated toxin-producing cyanoprokaryotes in different habitats around the world are discussed. Special attention is paid to the common toxins, called microcystin and nodularin, produced mainly by the Nostoc species. The effective application of a series of modern research methods to approach the issue of lichen toxicity as contributed by the cyanophotobiont partner is emphasized.


Author(s):  
Clark M. Johnson ◽  
Steven B. Shirey ◽  
Karin M. Barovich

ABSTRACT:The Lu-Hf and Re-Os isotope systems have been applied sparsely to elucidate the origin of granites, intracrustal processes and the evolution of the continental crust. The presence or absence of garnet as a residual phase during partial melting will strongly influence Lu/Hf partitioning, making the Lu–Hf isotope system exceptionally sensitive to evaluating the role of garnet during intracrustal differentiation processes. Mid-Proterozoic (1·1–1·5Ga ) ‘anorogenic’ granites from the western U.S.A. appear to have anomalously high εHf values, relative to their εNd values, compared with Precambrian orogenic granites from several continents. The Hf-Nd isotope variations for Precambrian orogenic granites are well explained by melting processes that are ultimately tied to garnet-bearing sources in the mantle or crust. Residual, garnet-bearing lower and middle crust will evolve to anomalously high εHf values over time and may be the most likely source for later ‘anorogenic’ magmas. When crustal and mantle rocks are viewed together in terms of Hf and Nd isotope compositions, a remarkable mass balance is apparent for at least the outer silicate earth where Precambrian orogenic continental crust is the balance to the high-εHf depleted mantle, and enriched lithospheric mantle is the balance to the low-εHf depleted mantle.Although the continental crust has been envisioned to have exceptionally high Re/Os ratios and very radiogenic Os isotope compositions, new data obtained on magnetite mineral separates suggest that some parts of the Precambrian continental crust are relatively Os-rich and non-radiogenic. It remains unclear how continental crust may obtain non-radiogenic Os isotope ratios, and these results have important implications for Re-Os isotope evolution models. In contrast, Phanerozoic batholiths and volcanic arcs that are built on young mafic lower crust may have exceptionally radiogenic Os isotope ratios. These results highlight the unique ability of Os isotopes to identify young mafic crustal components in orogenic magmas that are essentially undetectable using other isotope systems such as O, Sr, Nd and Pb.


2012 ◽  
Vol 4 (1) ◽  
pp. 745-781 ◽  
Author(s):  
C. J. Warren

Abstract. The exhumation of high and ultra-high pressure rocks is ubiquitous in Phanerozoic orogens created during continental collisions, and is common in many ocean-ocean and ocean-continent subduction zone environments. Three different tectonic environments have previously been reported, which exhume deeply buried material by different mechanisms and at different rates. However it is becoming increasingly clear that no single mechanism dominates in any particular tectonic environment, and the mechanism may change in time and space within the same subduction zone. In order for buoyant continental crust to subduct, it must remain attached to a stronger and denser substrate, but in order to exhume, it must detach (and therefore at least locally weaken) and be initially buoyant. Denser oceanic crust subducts more readily than more buoyant continental crust but exhumation must be assisted by entrainment within more buoyant and weak material such as serpentinite or driven by the exhumation of structurally lower continental crustal material. Weakening mechanisms responsible for the detachment of crust at depth include strain, hydration, melting, grain size reduction and the development of foliation. These may act locally or may act on the bulk of the subducted material. Metamorphic reactions, metastability and the composition of the subducted crust all affect buoyancy and overall strength. Subduction zones change in style both in time and space, and exhumation mechanisms change to reflect the tectonic style and overall force regime within the subduction zone. Exhumation events may be transient and occur only once in a particular subduction zone or orogen, or may be more continuous or occur multiple times.


1977 ◽  
Vol 37 (1) ◽  
pp. 13-19 ◽  
Author(s):  
Earl J. Hamilton

Wars in early modern times, although frequent, generated little price inflation because of their limited demands on real resources. The invention of paper currency and the resort to deficit financing to pay for wars changed that situation. In recent centuries wars have been the principal causes of inflation, although since World War II programs of social welfare unmatched by offsetting taxation have also fueled inflationary flames.


Sign in / Sign up

Export Citation Format

Share Document