Design of a single-mode Rayleigh–Taylor instability experiment in the highly nonlinear regime

2019 ◽  
Vol 32 ◽  
pp. 18-30
Author(s):  
G. Malamud ◽  
L. Elgin ◽  
T. Handy ◽  
C. Huntington ◽  
R.P. Drake ◽  
...  
2018 ◽  
Vol 838 ◽  
pp. 320-355 ◽  
Author(s):  
R. V. Morgan ◽  
W. H. Cabot ◽  
J. A. Greenough ◽  
J. W. Jacobs

Experiments and large eddy simulation (LES) were performed to study the development of the Rayleigh–Taylor instability into the saturated, nonlinear regime, produced between two gases accelerated by a rarefaction wave. Single-mode two-dimensional, and single-mode three-dimensional initial perturbations were introduced on the diffuse interface between the two gases prior to acceleration. The rarefaction wave imparts a non-constant acceleration, and a time decreasing Atwood number, $A=(\unicode[STIX]{x1D70C}_{2}-\unicode[STIX]{x1D70C}_{1})/(\unicode[STIX]{x1D70C}_{2}+\unicode[STIX]{x1D70C}_{1})$, where $\unicode[STIX]{x1D70C}_{2}$ and $\unicode[STIX]{x1D70C}_{1}$ are the densities of the heavy and light gas, respectively. Experiments and simulations are presented for initial Atwood numbers of $A=0.49$, $A=0.63$, $A=0.82$ and $A=0.94$. Nominally two-dimensional (2-D) experiments (initiated with nearly 2-D perturbations) and 2-D simulations are observed to approach an intermediate-time velocity plateau that is in disagreement with the late-time velocity obtained from the incompressible model of Goncharov (Phys. Rev. Lett., vol. 88, 2002, 134502). Reacceleration from an intermediate velocity is observed for 2-D bubbles in large wavenumber, $k=2\unicode[STIX]{x03C0}/\unicode[STIX]{x1D706}=0.247~\text{mm}^{-1}$, experiments and simulations, where $\unicode[STIX]{x1D706}$ is the wavelength of the initial perturbation. At moderate Atwood numbers, the bubble and spike velocities approach larger values than those predicted by Goncharov’s model. These late-time velocity trends are predicted well by numerical simulations using the LLNL Miranda code, and by the 2009 model of Mikaelian (Phys. Fluids., vol. 21, 2009, 024103) that extends Layzer type models to variable acceleration and density. Large Atwood number experiments show a delayed roll up, and exhibit a free-fall like behaviour. Finally, experiments initiated with three-dimensional perturbations tend to agree better with models and a simulation using the LLNL Ares code initiated with an axisymmetric rather than Cartesian symmetry.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wanhai Liu ◽  
Xiang Wang ◽  
Xingxia Liu ◽  
Changping Yu ◽  
Ming Fang ◽  
...  

Fluids ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 78 ◽  
Author(s):  
Sk. Mashfiqur Rahman ◽  
Omer San

In this paper, we investigate the performance of a relaxation filtering approach for the Euler turbulence using a central seven-point stencil reconstruction scheme. High-resolution numerical experiments are performed for both multi-mode and single-mode


2019 ◽  
Vol 12 ◽  
pp. 1142-1148 ◽  
Author(s):  
Wanhai Liu (刘万海) ◽  
Yulian Chen (陈玉莲) ◽  
Yumei Huang ◽  
Yang Mei ◽  
Wenhua Ye (叶文华)

Sign in / Sign up

Export Citation Format

Share Document