scholarly journals Nondestructive Measurement of the Mechanical Properties of Graphene Nanoplatelets Reinforced Nickel Aluminium Bronze Composites

Heliyon ◽  
2021 ◽  
pp. e07978
Author(s):  
Okoro Avwerosuoghene Moses ◽  
Lephuthing Senzeni Sipho ◽  
Rasiwela Livhuwani ◽  
Olubambi Peter Apata
2021 ◽  
Author(s):  
HASHIM AL MAHMUD ◽  
, MATTHEW RADUE ◽  
WILLIAM PISANI ◽  
GREGORY ODEGARD

The impact on the mechanical properties of unidirectional carbon fiber (CF)/epoxy composites reinforced with pristine graphene nanoplatelets (GNP), highly concentrated graphene oxide (GO), and Functionalized Graphene Oxide (FGO) are investigated in this study. The localized reinforcing effect of each of the graphene nanoplatelet types on the epoxy matrix is predicted at the nanoscale-level by molecular dynamics. The bulk-level mechanical properties of unidirectional CF/epoxy hybrid composites are predicted using micromechanics techniques considering the reinforcing function, content, and aspect ratios for each of the graphene nanoplatelets. In addition, the effect of nanoplatelets dispersion level is also investigated for the pristine graphene nanoplatelets considering a lower dispersion level with four layers of graphene nanoplatelets (4GNP). The results indicate that the shear and transverse properties are significantly affected by the nanoplatelet type, loading and aspect ratio. The results of this study can be used in the design of hybrid composites to tailor specific laminate properties by adjusting nanoplatelet parameters.


2018 ◽  
Vol 910 ◽  
pp. 123-129 ◽  
Author(s):  
X.N. Mu ◽  
H.N. Cai ◽  
Hong Mei Zhang ◽  
Q.B. Fan ◽  
Y. Wu

In this study, the titanium matrix composites (TiMCs) were fabricated by adding graphene nanoplatelets (GNPs). The dynamic compression test was carried out to study the effect of strain-rate and the GNPs content on dynamic mechanical properties of GNPs/Ti. Results show that the GNPs content (0wt%~0.8wt%) correspond to specific microstructure which affect the dynamic mechanical properties of the composites. Under high strain-rate (3500s-1), the 0.4wt%GNPs/Ti has the highest dynamic stress (~1860MPa) and strain (~30%). The adiabatic shearing band (ASB) microstructure of GNPs/Ti with various GNPs content has been observed under 3500s-1 strain-rate and the ASB microstructure evolution of 0.4wt%GNPs/Ti under different strain rate was investigated in particular.


2021 ◽  
Vol 125 (37) ◽  
pp. 10597-10609
Author(s):  
Ke Zhang ◽  
Xiaozhuang Yuan ◽  
Dongyu Li ◽  
Juan Du ◽  
Bo Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document