COMPUTATIONAL MODELING OF EPOXY-BASED HYBRID COMPOSITES REINFORCED WITH CARBON FIBERS AND FUNCTIONALIZED GRAPHENE NANOPLATELETS

2021 ◽  
Author(s):  
HASHIM AL MAHMUD ◽  
, MATTHEW RADUE ◽  
WILLIAM PISANI ◽  
GREGORY ODEGARD

The impact on the mechanical properties of unidirectional carbon fiber (CF)/epoxy composites reinforced with pristine graphene nanoplatelets (GNP), highly concentrated graphene oxide (GO), and Functionalized Graphene Oxide (FGO) are investigated in this study. The localized reinforcing effect of each of the graphene nanoplatelet types on the epoxy matrix is predicted at the nanoscale-level by molecular dynamics. The bulk-level mechanical properties of unidirectional CF/epoxy hybrid composites are predicted using micromechanics techniques considering the reinforcing function, content, and aspect ratios for each of the graphene nanoplatelets. In addition, the effect of nanoplatelets dispersion level is also investigated for the pristine graphene nanoplatelets considering a lower dispersion level with four layers of graphene nanoplatelets (4GNP). The results indicate that the shear and transverse properties are significantly affected by the nanoplatelet type, loading and aspect ratio. The results of this study can be used in the design of hybrid composites to tailor specific laminate properties by adjusting nanoplatelet parameters.

Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1958
Author(s):  
Hashim Al Mahmud ◽  
Matthew S. Radue ◽  
Sorayot Chinkanjanarot ◽  
Gregory M. Odegard

The impact on the mechanical properties of an epoxy resin reinforced with pristine graphene nanoplatelets (GNP), highly concentrated graphene oxide (GO), and functionalized graphene oxide (FGO) has been investigated in this study. Molecular dynamics (MD) using a reactive force field (ReaxFF) has been employed in predicting the effective mechanical properties of the interphase region of the three nanocomposite materials at the nanoscale level. A systematic computational approach to simulate the reinforcing nanoplatelets and probe their influence on the mechanical properties of the epoxy matrix is established. The modeling results indicate a significant degradation of the in-plane elastic Young’s (decreased by ~89%) and shear (decreased by ~72.5%) moduli of the nanocomposite when introducing large amounts of oxygen and functional groups to the robust sp2 structure of the GNP. However, the wrinkled morphology of GO and FGO improves the nanoplatelet-matrix interlocking mechanism, which produces a significant improvement in the out-of-plane shear modulus (increased by 2 orders of magnitudes). The influence of the nanoplatelet content and aspect ratio on the mechanical response of the nanocomposites has also been determined in this study. Generally, the predicted mechanical response of the bulk nanocomposite materials demonstrates an improvement with increasing nanoplatelet content and aspect ratio. The results show good agreement with experimental data available from the literature.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2919
Author(s):  
Hashim Al Mahmud ◽  
Matthew S. Radue ◽  
William A. Pisani ◽  
Gregory M. Odegard

The mechanical properties of aerospace carbon fiber/graphene nanoplatelet/epoxy hybrid composites reinforced with pristine graphene nanoplatelets (GNP), highly concentrated graphene oxide (GO), and Functionalized Graphene Oxide (FGO) are investigated in this study. By utilizing molecular dynamics data from the literature, the bulk-level mechanical properties of hybrid composites are predicted using micromechanics techniques for different graphene nanoplatelet types, nanoplatelet volume fractions, nanoplatelet aspect ratios, carbon fiber volume fractions, and laminate lay-ups (unidirectional, cross-ply, and angle-ply). For the unidirectional hybrid composites, the results indicate that the shear and transverse properties are significantly affected by the nanoplatelet type, loading and aspect ratio. For the cross-ply and angle ply hybrid laminates, the effect of the nanoplate’s parameters on the mechanical properties is minimal when using volume fractions and aspect ratios that are typically used experimentally. The results of this study can be used in the design of hybrid composites to tailor specific laminate properties by adjusting nanoplatelet parameters.


RSC Advances ◽  
2016 ◽  
Vol 6 (60) ◽  
pp. 54785-54792 ◽  
Author(s):  
Guopeng Sui ◽  
Yongsheng Zhao ◽  
Qin Zhang ◽  
Qiang Fu

Large mechanical properties enhancement of OBC via blending with chemical modification CTAB-GO.


Sign in / Sign up

Export Citation Format

Share Document